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Part 1: Graphs
A graph is a collection of nodes (vertices) and connections between them (edges). If an edge e
connects the vertices vi and vj , then we write e = vi, vj . An example is below.

BA C
e1

e2

e3

e4

More formally, a graph is defined by a set of vertices {v1, v2, ...}, and a set of edges
{ {v1, v2}, {v1, v3}, ... }.

If the order of the vertices in an edge does not matter, a graph is called undirected. A graph is called a
directed graph if the order of the vertices does matter. For example, the (undirected) graph above has
three vertices, A, B, and C, and four edges, e1 = {A,B}, e2 = {A,C}, e3 = {A,C}, and e4 = {B,C}.

Problem 1:
Draw an undirected graph that has the vertices A, B, C, D, and E and the edges {A,B}, {A,C},
{A,D}, {A,E}, {B,C}, {C,D}, and {D,E} in the space below.

Graphs are useful for solving many di↵erent kinds of problems. Most situations that involve some
kind of “relation” between elements can be represented by a graph.

Also, note that the graphs we’re discussing today have very little in common with the “graphs” of
functions you’re used to seeing in your math classes.
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Graphs are fully defined by their vertices and edges. The exact position of each vertex and edge
doesn’t matter—only which nodes are connected to each other. As such,two equivalent graphs can
look very di↵erent.

Problem 2:
Prove that the graphs below are equilvalent by comparing the sets of their vertices and edges.

A B

CD

A

B CD
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Definition 1:
The degree D(v) of a vertex v of a graph is the number of the edges of the graph connected to that
vertex.

Theorem 1:
For any graph, the sum of the degrees of the vertices equals twice the number of the edges.

Problem 3:
Prove Theorem 1

Problem 4:
Prove the following corollary of Theorem 1:
The number of vertices of odd degree in any graph is even.

3



Problem 5:
One girl tells another, “There are 25 kids in my class. Isn’t it funny that each of them has 5 friends
in the class?” “This cannot be true,” immediately replies the other girl. How did she know?

Part 1:
Let us represent the children in the first girl’s class as vertices of a graph. Let us represent the
friendships as the graph’s edges. What is the degree of each vertex?

Part 2:
So how did the second girl know right away?
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Part 2: Paths and cycles
A path in a graph is, intuitively, a sequence of edges: { {x1, x2}, {x2, x4}, ... }. For example, I’ve
highlighted one possible path in the graph below.

x1

x2

x3

x4

x5

x6

x7

A cycle is a path that starts and ends on the same vertex:

x1

x2

x3

x4

x5

x6

x7

A Eulerian
∗ path is a path that traverses each edge exactly once.

A Eulerian cycle is a cycle that does the same.

Similarly, a Hamiltonian path is a path in a graph that visits each vertex exactly once,
and a Hamiltonian cycle is a closed Hamiltonian path.

An example of a Hamiltonian path is below.

x1

x2

x3

x4

x5

x6

x7

∗Pronounced “oiler”. These terms are named after a great Swiss mathematician, Leonhard Euler (1707-1783), con-
sidered by many as the founder of graph theory.
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Definition 2:
We say a graph is connected if there is a path between every pair of its vertices. A graph is called
disconnected otherwise.

Problem 6:
Draw a disconnected graph with four vertices.
Then, draw a graph with four vertices, all of degree one.

Problem 7:
Find a Hamiltonian cycle in the following graph.

x1

x2

x3

x4

x5

x6

x7
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During his stay in the city of Königsberg, then the capital of Prussia, Euler came up with and solved
the following problem:
Can one design a walk that crosses each of the seven bridges in Königsberg once and only once? A
map of Königsberg in Euler’s time is provided below.

Problem 8:
Draw a graph with the vertices corresponding to the landmasses from the picture above and with the
edges corresponding to the Königsberg’s seven bridges. What are the degrees of each of the graph’s
vertices?
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Problem 9:
Is there an Eulerian path in this map of Königsberg? Why or why not?

Problem 10:
Find a Eulerian path in the following graph.

A

B CD

Problem 11:
Does the above graph contain a Eulerian cycle? Why or why not?
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Problem 12: A Traveling Salesman
A salesman with the home o�ce in Albuquerque has to fly to Boston, Chicago, and Denver, visiting
each city once, and then to come back to the home o�ce. The order in which he visits the cities does
not matter. The airfare prices, shown on the graph below, do not depend on the direction of the
travel. Find the cheapest route.

A

B CD

$1400 $1000$400

$800

$1200 $900

Here’s an extra copy of the graph.

A

B CD

$1400 $1000$400

$800

$1200 $900
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Problem 13:
On a test every student solved exactly 2 problems, and every problem was solved by exactly 2
students.

Part 1:
Show that the number of students in the class and the number of problems on the test are the same.

Part 2:
The teacher wants to make every student present one problem they solved at the board. Show that it
is possible to choose the problem each student presents so that every problem on the test gets
presented exactly once.
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Part 3: Traversing Graphs
As you can imagine, it would be good to have computers help us with problems involving graphs.
However, computers can’t simply look at a graph and provide a solution. If we want a computer’s
help, we must break our problems down into a series of steps.

First, let’s look at ways to traverse a graph. Say we’re given a single node†, and can only “see” the
edges directly connected to it. We want to explore the whole graph. How can we do so?

x1

? ?

?

One way to go about this is an algorithm called breadth–first search. Starting from our first node,
we’ll explore the nodes directly connected to it, then the nodes connected to those, one at a time,
and so on.
First, we explore x2, x3, x4, and find that they have a few edges too:

x1

x2 x3

x4

?

?

Then we explore x5 and x6:

x1

x2 x3

x4

x5 ?

x6

And finally, we explore x7, and we’re done.

x1

x2 x3

x4

x5 x7

x6

†In graph theory, the terms “node” and “vertex” are equivalent.
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While running a breadth-first search, we can arrange our nodes in “layers.” The first layer consists of
our starting node, the second, of nodes directly connected to it, and so on.
For example, we get the following if we do this with the graph above:

Layer 1: x1

Layer 2: x2, x3, x4

Layer 3: x5, x6

Layer 4: x7

x1

x3x2 x4

x5 x6

x7

We’ll call this resulting graph a bfs graph
‡ of G.

Problem 14:
Starting from x1, draw the bfs graph of the following:

x1

x3

x4

x6

x5

x2

‡That is, a breadth-f irst search graph
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Definition 3:
We say a graph is bipartite if it can be split into two groups so that no two nodes in the same group
are connected. For example, the following graph is bipartite, since we can create two groups
({x1, x2, x3} and {x4, x5}) in which no nodes are connected.

x1

x2

x3

x4

x5

Problem 15:
Which of the following graphs are bipartite?
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Problem 16:
Show that you only need two colors to color the nodes of a bipartite graph so that no two nodes of
the same color are connected.

Problem 17:
Given a large graph, how can you check if it is bipartite?

14



Graph Theory Challenge Problems

Sanjit Dandapanthula and Kason Ancelin

November 2, 2022

We’re going to start with a proof of (part of) Kuratowski’s theorem. First, we’ll start with a definition.

Two graphs G1 and G2 are isomorphic if we can rename the vertices of G1 to get G2. For instance,

the triangle graph K3 is isomorphic to the cycle graph C3 with 3 vertices because they have the same

fundamental structure.

Exercise 1. Draw all non-isomorphic graphs with four vertices. Ask your instructors if you need any help

with this definition.

A planar graph is a graph that we can draw on the page with non-overlapping edges.

Exercise 2. Show that K2, K3, and K4 are planar. Show that cyclic graphs (graphs that are just one large

cycle) are planar.

1

Sanjit Dandapanthula

Sanjit Dandapanthula
15



A complete bipartite graph is denoted by Kn,m. It has n+m vertices and is created by the following

process: split the set of vertices into a group of n and m vertices respectively and draw an edge from each

vertex of the first group to every vertex of the second group.

Exercise 3. Show that K2,2 is planar. Is it isomorphic to any of the graphs we’ve discussed earlier? Show

that K2,3 is planar.

Exercise 4. Convince yourself that K3,3 and K5 are not planar by trying to draw them on the page.

Kuratowski’s theorem states that these are the only cases that cause non-planarity. Namely, a graph

is non-planar precisely when it contains a subgraph isomorphic to K5 or K3,3. Note that a subgraph of

a graph G is a new graph obtained by considering only a subset of the vertices and edges of G.

Exercise 5. If H is non-planar and H is a subgraph of G, then show that G is non-planar (hint: don’t

overthink it).
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Exercise 6. We call G a subdivision of H if G can be obtained from H by adding vertices of degree two

in the middle of the vertices of H. Show that if G is a subdivision of a non-planar graph H then G is also

non-planar.

Exercise 7. Use the results shown in the previous two problems to show one direction of Kuratowski’s

theorem – namely, show that if G has a subgraph isomorphic to K5 or K3,3, then G is non-planar.

The other direction of Kuratowski’s theorem (if a graph is non-planar, it must contain a subgraph

isomorphic to K5 or K3,3) is decidedly more di�cult, so we will not prove this here.

Exercise 8. The six color theorem states that any map can be colored with six or fewer colors so that no

adjacent territories receive the same color. Frame this problem as a graph where each territory is a vertex

and edges represent territories sharing a border. Using induction on the number of vertices in a graph,
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prove the six color theorem. Note: There exist a four and five color theorem as well, however, their proofs

are more complicated.

Exercise 9. Design an algorithm to find the shortest path between any two vertices. Now suppose each edge

of the graph has some weight representing maybe the di�culty of traversing the edge or time to traverse the

edge. Assume you want to go from one vertex to another with the minimum weight possible for your route,

where the total weight of your route is simply the sum of the weights of the edges you traverse. Design

an e�cient algorithm to do this. In what cases does your algorithm work well or poorly? Discuss your

algorithm with an instructor and ask for their feedback on the strengths and weaknesses of your algorithm.

Note: This problem won’t have a ”correct” answer as much as it will have ”better” answers than others.
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1 Introduction

2 Copyright and acknowledgements

All rights reserved.

O. Gleizer would like to thank Brad Dirks, Fushuai Jiang, Jason O’Neil,
and Ethan Waldman, all very bright UCLA Math majors at the time, who
helped him teach the course this book is based upon in the Fall 2016 quarter
at LAMC. A special thank you goes to Jason who helped to correct a few
really harmful typos in the manuscript.

3 Instant Insanity

Instant Insanity is a popular puzzle, created by Franz Owen Armbruster,
currently marketed by the Winning Moves company, and sold, among other
places, on Amazon.com. It is advisable to have the puzzle in front of you
before reading this chapter any further.

The puzzle consists of four cubes with faces colored with four colors, typ-
ically red, blue, green, and white. The objective of the puzzle is to stack the
cubes in a row so that each side, front, back, upper, and lower, of the stack
shows each of the four colors.

There exist 41,472 di↵erent arrangements of the cubes. Only one is a
solution. Finding this one by trial and error seems about as likely as winning
a lottery jackpot. However, we have witnessed a few LAMC students doing
just that. Those were some truly extraordinary children!
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Problem 1 Try to solve the puzzle.

To approach a task this formidable, the more ordinary people, like the
authors of this book, need to forge some tools.

Cubic nets

A cubic net is a 2D picture simultaneously showing all the six sides (a.k.a. faces)
of a 3D cube, please take a look at the examples below.

Problem 2 Draw a cubic net di↵erent from the two above.

Problem 3 An ant wants to crawl from point A of a cubic room to the
opposite point B, please see the picture below.

A

B

The insect can crawl on any surface, a floor, ceiling, or wall, but cannot fly
through the air. Find at least two di↵erent shortest paths for the ant (there
is more than one). Hint: use a cubic net.
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Now we have the means to take a better look at the cubes from the puz-
zle, the cubic nets!

Cube 1 Cube 2

Cube 3 Cube 4

We can see that all the four cubes of the puzzle are di↵erent. Cube 1 is
the only one having three red faces. Cube 2 uniquely possesses two red faces.
Cube 3 is the only one having two adjacent blue faces. Cube 4 also has two
blue faces, but they are opposite to each other. Finally, Cube 4 is the only
one having two green faces.

Cubic nets are great for visualizing a single cube, but they are not as
e�cient at describing various configurations of all the four of them. We need
one more tool.

Graphs

A graph is a set of vertices, V = {v1, v2, . . .}, connected by edges, E =
{e1, e2, . . .}. If an edge e connects the vertices vi and vj, then we write
e = {vi, vj}. If the order of the vertices does not matter, the graph is called
undirected. Typically, the word graph means an undirected graph. A graph is
called a directed graph, or a digraph, if the order of the vertices does matter.
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For example, the (undirected) graph below has three vertices, A, B, and C,
and four edges, e1 = {A,B}, e2 = {A,C}, e3 = {A,C}, and e4 = {B,C}.

BA C
e1

e2

e3

e4

An edge connecting a vertex to itself is called a loop. For example, the
digraph below has two loops, e5 = (A,A) and e6 = (C,C), in addition to the
edges e1 = (B,A), e2 = (A,C), e3 = (C,A), and e4 = (C,B).

BA C
e1

e2

e3

e4
e5 e6

Note that we use di↵erent notations for an edge of a graph and digraph.
An edge of a graph, e = {A,B}, is a set of the two vertices it connects. In
this case, the order does not matter, {A,B} = {B,A} as sets. An edge of a
digraph, e = (A,B) is a list (an ordered set) of the vertices it connects. The
order does matter now, (A,B) 6= (B,A).

The endpoint of a directed edge e is called its head and denoted h(e). The
starting point on an edge e is called its tail and denoted t(e). For example,
h(e4) = B and t(e4) = C for the digraph above.

In the book, we use the letters V and E for the sets of vertices and edges
in a graph. We use the letters V and E for the numbers of the vertices and
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edges. In other words, V is the number of elements in the set V , E is the
number of elements in the set E .

Problem 4 Given a graph with V vertices and E edges that has no loops,
how many ways are there to orient the edges so that the resulting digraphs
are all di↵erent?

Problem 5 Draw an undirected graph that has the vertices A, B, C, D,
and E and the edges {A,B}, {A,C}, {A,D}, {A,E}, {B,C}, {C,D}, and
{D,E}.

Two di↵erent pictures of a graph can look very dissimilar.

Problem 6 Prove that the two pictures below represent the same graph by
comparing the sets of their vertices and edges.

A B

CD

A

B CD

Getting back to the puzzle, let us represent Cube 1, see page 4, by a
graph. The vertices will be the face colors, Blue, Green, Red, and White,
V = {B,G,R,W}. Two vertices will be connected by an edge if and only
if the corresponding faces are opposing each other on the cube. Cube 1 has
the following edges, e1 = {B,R}, e2 = {G,W}, and the loop e3 = {R,R}.
To emphasize that all the three edges represent the first cube, let us mark
them with the number 1.
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1

1

1

Cube 2 has the following pairs of opposing faces, {B,W}, {G,R}, and
{R,W}. Let us add them to the graph as the edges e4, e5, and e6.

1

1

12 2

2

Let us now make the graph represent all the four cubes.
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1

1

1
2

2

2

3

3

3

4

4

4

Problem 7 Check if the above representation is correct for Cubes 3 and 4.

With the help of the above graph, solving the puzzle becomes as easy as
a walk in the park, literally. Imagine that the vertices of the above graph are
the clearings and the edges are the paths. An edge marked by the number
i represents two opposing faces of the i-th cube. Let us try to find a closed
walk, a.k.a. a cycle, in the graph that visits each clearing once and uses the
paths marked by the di↵erent numbers, i = 1, 2, 3, 4. If we order the front
and rear sides of the cubes accordingly, then the front and rear of the stack
will show all the four di↵erent colors in the order prescribed by our walk.

For example, here is such an (oriented) cycle, represented by the magenta
arrows on the picture below.

8

Sanjit Dandapanthula

Sanjit Dandapanthula
25



1

1

1
2

2

2

3

3

3

4

4

4

The first leg of the walk tells us to take Cube 1 and to make sure that its
blue side is facing forward. Then the red side, opposite to the blue one, will
face the rear.

Front:

Rear:

The next leg of the walk tells us to take Cube 2 and to place it in such
a way that its red side faces us while the opposing green side faces the rear.
Since we go in a cycle that visits all the colors one-by-one, neither color re-
peats the ones already used on their sides of the stack.

Front:

Rear:

9

Sanjit Dandapanthula

Sanjit Dandapanthula
26



The third leg of the walk tells us to take Cube 4, not Cube 3, and to
place it green side forward, white side facing the rear.

Front:

Rear:

Finally, the last leg of the walk tells us to take Cube 3 and to place it the
white side facing forward, the opposite blue side facing the rear.

Front:

Rear:

Now the front and rear of the stack are done. If we manage to find a
second oriented cycle in the original graph that has all the properties of the
first cycle, but uses none of its edges, we would be able to do the upper
and lower sides of the stack and to complete the puzzle. Using the edges
we have already traversed during our first walk will mess up the front-rear
configuration, but there are still a plenty of the edges left!

Problem 8 Complete the puzzle.

4 Elementary properties of graphs

Two vertices of a graph are called adjacent, if they are connected by an edge.
Two edges of a graph are called incident, if they share a vertex. Also, a
vertex and an edge are called incident, if the vertex is one of the two the
edge connects.
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