Exercises For Surface Classification

Michael A. Hall

October 21, 2012

Exercise 1 Describe the surface that is the result of each identification below.

Orientability

Informally, we say that a surface is *orientable* if whenever you draw an \mathbb{R} on it and then move the \mathbb{R} around, returning to its original position, it always looks like an \mathbb{R} (and not like a \mathbb{R}). The surface is said to be *nonorientable* if it is possible to move an \mathbb{R} around to get a \mathbb{R} .

Exercise Which of the surfaces below are orientable, and which are non-orientable?

Euler Number

The Euler number of a graph G, which we denote $\chi(G)$, is defined to be the number of vertices (V) minus the number of edges (E) plus the number of faces (F):

$$\chi(G) = V - E + F.$$

Exercise For each graph (which lives on a surface), compute the Euler number V - E + F:

Exercise What is the effect on the Euler characteristic of zipping in a perforation, handle, crosshandle, or crosscap? (See the other handout.)