Continued Fractions

Prepared by Mark on October 26, 2023 Based on a handout by Matthew Gherman and Adam Lott

Part 1: The Euclidean Algorithm

Definition 1:

The greatest common divisor of a and b is the greatest integer that divides both a and b. We denote this number with gcd(a, b). For example, gcd(45, 60) = 15.

Problem 2:

Find gcd(20, 14) by hand.

Theorem 3: The Division Algorithm

Given two integers a, b, we can find two integers q, r, where $0 \le r < b$ and a = qb + r. In other words, we can divide a by b to get q remainder r.

For example, take $14 \div 3$. We can re-write this as $3 \times 4 + 2$. Here, a and b are 14 and 3, q = 4 and r = 2.

Theorem 4:

For any integers a, b, c, gcd(ac+b, a) = gcd(a, b)

Problem 5:

Compute gcd(668, 6) *Hint:* $668 = 111 \times 6 + 2$ Then, compute gcd($3 \times 668 + 6, 668$).

Problem 6: The Euclidean Algorithm

Using the two theorems above, detail an algorithm for finding gcd(a, b). Then, compute gcd(1610, 207) by hand.

Part 2:

Definition 7:

A *finite continued fraction* is an expression of the form

$$a_{0} + \frac{1}{a_{1} + \frac{1}{a_{2} + \frac{1}{a_{3} + \dots + \frac{1}{a_{k-1} + \frac{1}{a_{k}}}}}$$

where $a_0, a_1, ..., a_k$ are all in \mathbb{Z}^+ . We'll denote this as $[a_0, a_1, ..., a_k]$.

Problem 8:

Write each of the following as a continued fraction.

Hint: Solve for one a_n at a time.

- 5/12
- 5/3
- 33/23
- · 37/31

Problem 9:

Write each of the following continued fractions as a regular fraction in lowest terms:

- [2, 3, 2]
- [1, 4, 6, 4]• [2, 3, 2, 3]
- [9, 12, 21, 2]

Problem 10:

Let $\frac{p}{q}$ be a positive rational number in lowest terms. Perform the Euclidean algorithm to obtain the following sequence:

$$p = q_0 q + r_1$$

$$q = q_1 r_1 + r_2$$

$$r_1 = q_2 r_2 + r_3$$

$$\vdots$$

$$r_{k-1} = q_k r_k + 1$$

$$r_k = q_{k+1}$$

We know that we will eventually get 1 as the remainder because p and q are relatively prime. Show that $p/q = [q_0, q_1, ..., q_{k+1}]$.

Problem 11: Repeat Problem 8 using the method outlined in Problem 10.

Definition 12:

An *infinite continued fraction* is an expression of the form

$$a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \frac{1}{a_4 + \dots}}}}$$

where $a_0, a_1, a_2, ...$ are in \mathbb{Z}^+ . To prove that this expression actually makes sense and equals a finite number is beyond the scope of this worksheet, so we assume it for now. This is denoted $[a_0, a_1, a_2, ...]$.

Problem 13:

Using a calculator, compute the first five terms of the continued fraction expansion of the following numbers. Do you see any patterns?

- $\cdot \sqrt{2}$
- $\pi \approx 3.14159...$
- $\sqrt{5}$
- $e \approx 2.71828...$

Problem 14:

Show that an $\alpha \in \mathbb{R}^+$ can be written as a finite continued fraction if and only if α is rational. *Hint:* For one of the directions, use Problem 10

Definition 15:

The continued fraction $[a_0, a_1, a_2, ...]$ is *periodic* if it ends in a repeating sequence of digits. A few examples are below. We denote the repeating sequence with a line.

- $[1, 2, 2, 2, ...] = [1, \overline{2}]$ is periodic.
- [1, 2, 3, 4, 5, ...] is not periodic.
- $[1, 3, 7, 6, 4, 3, 4, 3, 4, 3, ...] = [1, 3, 7, 6, \overline{4,3}]$ is periodic.
- [1, 2, 4, 8, 16, ...] is not periodic.

Problem 16:

- Show that $\sqrt{2} = [1, \overline{2}].$
- Show that $\sqrt{5} = [1, \overline{4}]$.

Hint: use the same strategy as Problem 13 but without a calculator.

Problem 17: Challenge I

Express the following continued fractions in the form $\frac{a+\sqrt{b}}{c}$ where a, b, and c are integers:

- $[\overline{1}]$ $[\overline{2,5}]$
- $[1,3,\overline{2,3}]$

Problem 18: Challenge II

Let $\alpha = [a_0, ..., a_r, \overline{a_{r+1}, ..., a_{r+p}}]$ be any periodic continued fraction. Prove that α is of the form $\frac{a+\sqrt{b}}{c}$ for some integers a, b, c where b is not a perfect square.

Problem 19: Challenge III

Prove that any number of the form $\frac{a+\sqrt{b}}{c}$ where a, b, c are integers and b is not a perfect square can be written as a periodic continued fraction.

Part 3: Convergents

Definition 20:

Let $\alpha = [a_0, a_1, a_2, ...]$ be an infinite continued fraction (aka an irrational number). The *n*th convergent to α is the rational number $[a_0, a_1, ..., a_n]$ and is denoted $C_n(\alpha)$.

Problem 21:

Calculate the following convergents and write them in lowest terms:

- $C_3([1, \underline{2, 3}, 4, \dots])$
- $C_4([0, \overline{2, 3}])$
- $C_5([\overline{1,5}])$

Problem 22:

Recall from last week that $\sqrt{5} = [2, \overline{4}]$. Calculate the first five convergents to $\sqrt{5}$ and write them in lowest terms. Do you notice any patterns?

Hint: Look at the numbers $\sqrt{5} - C_j(\sqrt{5})$ for $1 \le j \le 5$

Properties of Convergents

In this section, we want to show that the *n*th convergent to a real number α is the best approximation of α with the given denominator. Let $\alpha = [a_0, a_1, ...]$ be fixed, and we will write C_n instead of $C_n(\alpha)$ for short. Let p_n/q_n be the expression of C_n as a rational number in lowest terms. We will eventually prove that $|\alpha - C_n| < \frac{1}{q_n^2}$, and there is no better rational estimate of α with denominator less than or equal to q_n .

First we want the recursive formulas $p_n = a_n p_{n-1} + p_{n-2}$ and $q_n = a_n q_{n-1} + q_{n-2}$ given $p_{-1} = 1$, $p_0 = a_0$, $q_{-1} = 0$, and $q_0 = 1$.

Problem 23: Verify the recursive formula for $1 \le j \le 3$ for the convergents C_j of:

- [1,2,3,4,...]
- $[0, \overline{2, 3}]$
- $[\overline{1,5}]$

Problem 24: Challenge IV

Prove that $p_n = a_n p_{n-1} + p_{n-2}$ and $q_n = a_n q_{n-1} + q_{n-2}$ by induction.

- As the base case, verify the recursive formulas for n = 1 and n = 2.
- Assume the recursive formulas hold for $n \leq m$ and show the formulas hold for m + 1.

Problem 25:

Using the recursive formula from Problem 24, we will show that $p_n q_{n-1} - p_{n-1} q_n = (-1)^{n-1}$.

- What is $p_1q_0 p_0q_1$?
- Substitute $a_n p_{n-1} + p_{n-2}$ for p_n and $a_n q_{n-1} + q_{n-2}$ for q_n in $p_n q_{n-1} p_{n-1} q_n$. Simplify the expression.
- What happens when n = 2? Explain why $p_n q_{n-1} p_{n-1}q_n = (-1)^{n-1}$.

Problem 26: Challenge VI

Similarly derive the formula $p_n q_{n-2} - p_{n-2}q_n = (-1)^{n-2}a_n$.

Problem 27:

Recall $C_n = p_n/q_n$. Show that $C_n - C_{n-1} = \frac{(-1)^{n-1}}{q_{n-1}q_n}$ and $C_n - C_{n-2} = \frac{(-1)^{n-2}a_n}{q_{n-2}q_n}$. *Hint:* Use Problem 25 and $p_n q_{n-2} - p_{n-2}q_n = (-1)^{n-2}a_n$ respectively In Problem 22, the value $\alpha - C_n$ alternated between negative and positive and $|\alpha - C_n|$ got smaller

each step. Using the relations in Problem 27, we can prove that this is always the case. Specifically, α is always between C_n and C_{n+1} .

Problem 28:

Let's figure out how well the *n*th convergents estimate α . We will show that $|\alpha - C_n| < \frac{1}{a^2}$.

- Note that |C_{n+1} C_n| = 1/(q_nq_{n+1}).
 Why is |α C_n| ≤ |C_{n+1} C_n|?
 Conclude that |α C_n| < 1/q_n².

We are now ready to prove a fundamental result in the theory of rational approximation.

Problem 29: Dirichlet's approximation theorem

Let α be any irrational number. Prove that there are infinitely many rational numbers $\frac{p}{q}$ such that $|\alpha - \frac{p}{q}| < \frac{1}{q^2}.$

Problem 30: Challenge VII

Prove that if α is *rational*, then there are only *finitely* many rational numbers $\frac{p}{q}$ satisfying $|\alpha - \frac{p}{q}| < \frac{1}{2}$.

 $|\alpha - \frac{p}{q}| < \frac{1}{q^2}$. The above result shows that the *n*th convergents estimate α extremely well. Are there better estimates for α if we want small denominators? In order to answer this question, we introduce the Farey sequence.

Definition 31:

The *Farey sequence* of order n is the set of rational numbers between 0 and 1 whose denominators (in lowest terms) are $\leq n$, arranged in increasing order.

Problem 32:

List the Farey sequence of order 4. Now figure out the Farey sequence of order 5 by including the relevant rational numbers in the Farey sequence of order 4.

Problem 33:

Let $\frac{a}{b}$ and $\frac{c}{d}$ be consecutive elements of the Farey sequence of order 5. What does bc - ad equal?

Problem 34: Challenge VIII

Prove that bc - ad = 1 for $\frac{a}{b}$ and $\frac{c}{d}$ consecutive rational numbers in Farey sequence of order n.

- In the plane, draw the triangle with vertices (0,0), (b,a), (d,c). Show that the area A of this triangle is $\frac{1}{2}$ using Pick's Theorem. Recall that Pick's Theorem states $A = \frac{B}{2} + I 1$ where B is the number of lattice points on the boundary and I is the number of points in the interior. *Hint*: B=3 and I=0
- Show that the area of the triangle is also given by $\frac{1}{2}|ad-bc|$.
- Why is bc > ad?
- Conclude that bc ad = 1.

Problem 35:

Use the result of Problem 34 to show that there is no rational number between C_{n-1} and C_n with denominator less than or equal to q_n . Conclude that if a/b is any rational number with $b \leq q_n$, then $|\alpha - \frac{a}{b}| \geq |\alpha - \frac{p_n}{q_n}|$

Problem 36: Challenge V

Prove the following strengthening of Dirichlet's approximation theorem. If α is irrational, then there are infinitely many rational numbers $\frac{p}{q}$ satisfying $|\alpha - \frac{p}{q}| < \frac{1}{2q^2}$.

- Prove that $(x+y)^2 \ge 4xy$ for any real x, y.
- Let p_n/q_n be the *n*th convergent to α . Prove that

$$|\frac{p_n}{q_n} - \frac{p_{n+1}}{q_{n+1}}|^2 \ge 4|\frac{p_n}{q_n} - \alpha||\frac{p_{n+1}}{q_{n+1}} - \alpha|$$

Hint: α lies in between $\frac{p_n}{q_n}$ and $\frac{p_{n+1}}{q_{n+1}}$

- Prove that either $\frac{p_n}{q_n}$ or $\frac{p_{n+1}}{q_{n+1}}$ satisfies the desired inequality (Hint: proof by contradiction).
- Conclude that there are infinitely many rational numbers $\frac{p}{q}$ satisfying $|\alpha \frac{p}{q}| < \frac{1}{2q^2}$.