
Advanced 2 Fall 2023

Continued Fractions
Prepared by Mark on October 26, 2023

Based on a handout by Matthew Gherman and Adam Lott

Part 1: The Euclidean Algorithm

Definition 1:
The greatest common divisor of a and b is the greatest integer that divides both a and b.
We denote this number with gcd(a, b). For example, gcd(45, 60) = 15.

Problem 2:
Find gcd(20, 14) by hand.

Theorem 3: The Division Algorithm
Given two integers a, b, we can find two integers q, r, where 0 ≤ r < b and a = qb+ r.
In other words, we can divide a by b to get q remainder r.

For example, take 14÷ 3. We can re-write this as 3× 4 + 2.
Here, a and b are 14 and 3, q = 4 and r = 2.

Theorem 4:
For any integers a, b, c,
gcd(ac+ b, a) = gcd(a, b)

Problem 5:
Compute gcd(668, 6) Hint: 668 = 111× 6 + 2
Then, compute gcd(3× 668 + 6, 668).

Problem 6: The Euclidean Algorithm
Using the two theorems above, detail an algorithm for finding gcd(a, b).
Then, compute gcd(1610, 207) by hand.
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Part 2:

Definition 7:
A finite continued fraction is an expression of the form

a0 +
1

a1 +
1

a2 +
1

a3 + ...+
1

ak−1 +
1

ak

where a0, a1, ..., ak are all in Z+. We’ll denote this as [a0, a1, ..., ak].

Problem 8:
Write each of the following as a continued fraction.
Hint: Solve for one an at a time.

• 5/12
• 5/3
• 33/23
• 37/31

Problem 9:
Write each of the following continued fractions as a regular fraction in lowest terms:

• [2, 3, 2]
• [1, 4, 6, 4]
• [2, 3, 2, 3]
• [9, 12, 21, 2]
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Problem 10:
Let p

q be a positive rational number in lowest terms. Perform the Euclidean algorithm to obtain the
following sequence:

p = q0q + r1

q = q1r1 + r2

r1 = q2r2 + r3

...
rk−1 = qkrk + 1

rk = qk+1

We know that we will eventually get 1 as the remainder because p and q are relatively prime.
Show that p/q = [q0, q1, ..., qk+1].

Problem 11:
Repeat Problem 8 using the method outlined in Problem 10.
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Definition 12:
An infinite continued fraction is an expression of the form

a0 +
1

a1 +
1

a2 +
1

a3 +
1

a4 + ...

where a0, a1, a2, ... are in Z+. To prove that this expression actually makes sense and equals a finite
number is beyond the scope of this worksheet, so we assume it for now. This is denoted [a0, a1, a2, ...].

Problem 13:
Using a calculator, compute the first five terms of the continued fraction expansion of the following
numbers. Do you see any patterns?

•
√
2

• π ≈ 3.14159...
•
√
5

• e ≈ 2.71828...

Problem 14:
Show that an α ∈ R+ can be written as a finite continued fraction if and only if α is rational.
Hint: For one of the directions, use Problem 10
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Definition 15:
The continued fraction [a0, a1, a2, ...] is periodic if it ends in a repeating sequence of digits.
A few examples are below. We denote the repeating sequence with a line.

• [1, 2, 2, 2, ...] = [1, 2] is periodic.
• [1, 2, 3, 4, 5, ...] is not periodic.
• [1, 3, 7, 6, 4, 3, 4, 3, 4, 3, ...] = [1, 3, 7, 6, 4, 3] is periodic.
• [1, 2, 4, 8, 16, ...] is not periodic.

Problem 16:
• Show that

√
2 = [1, 2].

• Show that
√
5 = [1, 4].

Hint: use the same strategy as Problem 13 but without a calculator.

Problem 17: Challenge I
Express the following continued fractions in the form a+

√
b

c where a, b, and c are integers:
• [ 1 ]
• [ 2, 5 ]
• [ 1, 3, 2, 3 ]

Problem 18: Challenge II
Let α = [ a0, ..., ar, ar+1, ..., ar+p ] be any periodic continued fraction.
Prove that α is of the form a+

√
b

c for some integers a, b, c where b is not a perfect square.

Problem 19: Challenge III
Prove that any number of the form a+

√
b

c where a, b, c are integers and b is not a perfect square can
be written as a periodic continued fraction.
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Part 3: Convergents

Definition 20:
Let α = [a0, a1, a2, ...] be an infinite continued fraction (aka an irrational number).
The nth convergent to α is the rational number [a0, a1, ..., an] and is denoted Cn(α).

Problem 21:
Calculate the following convergents and write them in lowest terms:

• C3([ 1, 2, 3, 4, ... ])
• C4([ 0, 2, 3 ])
• C5([ 1, 5 ])

Problem 22:
Recall from last week that

√
5 = [2, 4]. Calculate the first five convergents to

√
5 and write them in

lowest terms. Do you notice any patterns?
Hint: Look at the numbers

√
5− Cj(

√
5) for 1 ≤ j ≤ 5

Properties of Convergents
In this section, we want to show that the nth convergent to a real number α is the best
approximation of α with the given denominator. Let α = [a0, a1, ...] be fixed, and we will write Cn

instead of Cn(α) for short. Let pn/qn be the expression of Cn as a rational number in lowest terms.
We will eventually prove that |α− Cn| < 1

q2n
, and there is no better rational estimate of α with

denominator less than or equal to qn.
First we want the recursive formulas pn = anpn−1 + pn−2 and qn = anqn−1 + qn−2 given p−1 = 1,
p0 = a0, q−1 = 0, and q0 = 1.
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Problem 23:
Verify the recursive formula for 1 ≤ j ≤ 3 for the convergents Cj of:

• [ 1, 2, 3, 4, ... ]
• [ 0, 2, 3 ]
• [ 1, 5 ]

Problem 24: Challenge IV
Prove that pn = anpn−1 + pn−2 and qn = anqn−1 + qn−2 by induction.

• As the base case, verify the recursive formulas for n = 1 and n = 2.
• Assume the recursive formulas hold for n ≤ m and show the formulas hold for m+ 1.

Problem 25:
Using the recursive formula from Problem 24, we will show that pnqn−1 − pn−1qn = (−1)n−1.

• What is p1q0 − p0q1?
• Substitute anpn−1 + pn−2 for pn and anqn−1 + qn−2 for qn in pnqn−1 − pn−1qn. Simplify the

expression.
• What happens when n = 2? Explain why pnqn−1 − pn−1qn = (−1)n−1.

Problem 26: Challenge VI
Similarly derive the formula pnqn−2 − pn−2qn = (−1)n−2an.
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Problem 27:
Recall Cn = pn/qn. Show that Cn −Cn−1 = (−1)n−1

qn−1qn
and Cn −Cn−2 = (−1)n−2an

qn−2qn
. Hint: Use Problem

25 and pnqn−2 − pn−2qn = (−1)n−2an respectively
In Problem 22, the value α− Cn alternated between negative and positive and |α− Cn| got smaller
each step. Using the relations in Problem 27, we can prove that this is always the case. Specifically, α
is always between Cn and Cn+1.

Problem 28:
Let’s figure out how well the nth convergents estimate α. We will show that |α− Cn| < 1

q2n
.

• Note that |Cn+1 − Cn| = 1
qnqn+1

.
• Why is |α− Cn| ≤ |Cn+1 − Cn|?
• Conclude that |α− Cn| < 1

q2n
.

We are now ready to prove a fundamental result in the theory of rational approximation.

Problem 29: Dirichlet’s approximation theorem
Let α be any irrational number. Prove that there are infinitely many rational numbers p

q such that
|α− p

q | <
1
q2 .
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Problem 30: Challenge VII
Prove that if α is rational, then there are only finitely many rational numbers p

q satisfying
|α− p

q | <
1
q2 .

The above result shows that the nth convergents estimate α extremely well. Are there better
estimates for α if we want small denominators? In order to answer this question, we introduce the
Farey sequence.

Definition 31:
The Farey sequence of order n is the set of rational numbers between 0 and 1 whose denominators (in
lowest terms) are ≤ n, arranged in increasing order.

Problem 32:
List the Farey sequence of order 4. Now figure out the Farey sequence of order 5 by including the
relevant rational numbers in the Farey sequence of order 4.

Problem 33:
Let a

b and c
d be consecutive elements of the Farey sequence of order 5. What does bc− ad equal?

Problem 34: Challenge VIII
Prove that bc− ad = 1 for a

b and c
d consecutive rational numbers in Farey sequence of order n.

• In the plane, draw the triangle with vertices (0,0), (b, a), (d, c). Show that the area A of this
triangle is 1

2 using Pick’s Theorem. Recall that Pick’s Theorem states A = B
2 + I − 1 where B

is the number of lattice points on the boundary and I is the number of points in the interior.
Hint: B=3 and I=0

• Show that the area of the triangle is also given by 1
2 |ad− bc|.

• Why is bc > ad?
• Conclude that bc− ad = 1.
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Problem 35:
Use the result of Problem 34 to show that there is no rational number between Cn−1 and Cn with
denominator less than or equal to qn. Conclude that if a/b is any rational number with b ≤ qn, then
|α− a

b | ≥ |α− pn

qn
|

Problem 36: Challenge V
Prove the following strengthening of Dirichlet’s approximation theorem. If α is irrational, then there
are infinitely many rational numbers p

q satisfying |α− p
q | <

1
2q2 .

• Prove that (x+ y)2 ≥ 4xy for any real x, y.
• Let pn/qn be the nth convergent to α. Prove that

|pn
qn

− pn+1

qn+1
|2 ≥ 4|pn

qn
− α||pn+1

qn+1
− α|

Hint: α lies in between pn

qn
and pn+1

qn+1

• Prove that either pn

qn
or pn+1

qn+1
satisfies the desired inequality (Hint: proof by contradiction).

• Conclude that there are infinitely many rational numbers p
q satisfying |α− p

q | <
1

2q2 .
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