Olympiads Week 5: Polynomials 2

ORMC

10/29/23

Remember to write down your solutions, as proofs. You don't have to start by writing out a full proof to every problem you try, but once you've solved a problem or two, take a few minutes to write out a proof as if this was being graded at an Olympiad.

Problem 0.1 (Putnam 2005 B1). Find a nonzero polynomial $P(x, y)$ such that for all $a \in \mathbb{R}$, $P(\lfloor a\rfloor,\lfloor 2 a\rfloor)=0$.
($\lfloor x\rfloor$ is the greatest integer with $\lfloor x\rfloor \leq x$.)

1 Viète's Formulas

Non-competition problems in this section are from Putnam and Beyond.
Theorem 1.1 (Viète's Formulas). Let $P(x)=a_{n} x^{n}+\cdots+a_{0}$ be a polynomial with coefficients in \mathbb{C}. Then the fundamental theorem of algebra tells us that we can factor it as

$$
P(x)=a_{n}\left(x-x_{1}\right) \ldots\left(x-x_{n}\right)
$$

for some complex roots x_{1}, \ldots, x_{n}.
Viète's Formulas say that

$$
(-1)^{k} \frac{a_{n-k}}{a_{n}}=S_{k}\left(x_{1}, \ldots, x_{n}\right)
$$

where $S_{k}\left(x_{1}, \ldots, x_{n}\right)$ is the elementary symmetric polynomial of degree k, meaning it is the sum of all distinct products of k distinct variables in x_{1}, \ldots, x_{n}.

Most famously, in the cases $k=1, k=n$, we get

$$
-\frac{a_{n-1}}{a_{n}}=x_{1}+\cdots+x_{n}
$$

and

$$
(-1)^{n} \frac{a_{0}}{a_{n}}=x_{1} \ldots x_{n}
$$

Problem 1.2 (AIME II 2008 Problem 7). Let r, s, and t be the three roots of the equation

$$
8 x^{3}+1001 x+2008=0
$$

Find $(r+s)^{3}+(s+t)^{3}+(t+r)^{3}$.
Problem 1.3. Find the zeros of the polynomial $P(x)=x^{4}-6 x^{3}+18 x^{2}-30 x+25$ knowing that the sum of two of them is 4 .

Problem 1.4. Let $P(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}$ be a polynomial of degree $n \geq 3$. Knowing that $a_{n-1}=-\binom{n}{1}, a_{n-2}=\binom{n}{2}$, and that all roots are real, find the remaining coefficients.

Problem 1.5. Let a, b, c be real numbers. Show that $a \geq 0, b \geq 0$, and $c \geq 0$ if and only if $a+b+c \geq 0, a b+b c+c a \geq 0$, and $a b c \geq 0$.
Problem 1.6 (BAMO 2022 Problem 5). Sofiya and Marquis are playing a game. Sofiya announces to Marquis that she's thinking of a poly- nomial of the form $f(x)=x^{3}+p x+q$ with three integer roots that are not necessarily distinct. She also explains that all of the integer roots have absolute value less than (and not equal to) N, where N is some fixed number which she tells Marquis. As a "move" in this game, Marquis can ask Sofiya about any number x and Sofiya will tell him whether $f(x)$ is positive, negative, or zero. Marquis's goal is to figure out Sofiya's polynomial. If $N=3 \cdot 2^{k}$ for some positive integer k, prove that there is a strategy which allows Marquis to identify the polynomial after making at most $2 k+1$ "moves".

2 Irreducible Polynomials

Non-competition problems in this section are from Sucharit Sarkar's Math 100.
Problem 2.1. Show that $x^{4 a}+x^{4 b+1}+x^{4 c+2}+x^{4 d+3}$, where a, b, c, d are positive integers, is divisible by $x^{3}+x^{2}+x+1$.

Hint: $x^{3}+x^{2}+x+1=\left(x^{2}+1\right)(x+1)$.
If $f(x)$ is an integer polynomial, we say that it's irreducible when there are no nonconstant polynomials $g(x)$ and $h(x)$ with $f(x)=g(x) h(x)$.

Here are two results that are useful in factoring polynomials with integer coefficients into irreducibles.

Theorem 2.2 (Rational-Root Theorem). If $P(x)=a_{n} x^{n}+\cdots+a_{0}$ is a polynomial with integer coefficients, and if the rational number $\frac{r}{s}$ (r and s are relatively prime) is a root of $P(x)=0$, then r divides a_{0} and s divides a_{n}.

Lemma 2.3 (Gauss's Lemma). Let $P(x)$ be a polynomial with integer coefficients. If $P(x)$ can be factored into a product of two polynomials with rational coefficients, then $P(x)$ can be factored into a product of two polynomials with integer coefficients.

Problem 2.4. Let $f(x)=a_{n} x^{n}+\cdots+a_{0}$ be a polynomial of degree n with integral coefficients. If a_{0}, a_{n} and $f(1)$ are odd, prove that $f(x)=0$ has no rational roots.
Problem 2.5. For what integer a does $x^{2}-x+a$ divide $x^{13}+x+90$?

2.1 Eisenstein's Criterion

As a hint for an IMO problem, let's prove a tool called Eisenstein's Criterion that helps determine when integer polynomials are irreducible.

Problem 2.6. Prove Eisenstein's Criterion:
Let $f(x)=\sum_{i=0}^{n} a_{i} x^{i}$ be an integer polynomial, and let p be a prime such that

- For $i<n, p \mid a_{i}$
- $p \nmid a_{n}$
- $p^{2} \not \backslash a_{0}$.

Then $f(x)$ is irreducible.
Problem 2.7 (IMO 1993 Problem 1). Let $n>1$ be an integer. Prove that there are no nonconstant polynomials $g(x)$ and $h(x)$ with integer coefficients such that

$$
g(x) h(x)=x^{n}+5 x^{n-1}+3 .
$$

3 Competition Problems

Problem 3.1 (HMMT 2007). The complex numbers $\alpha_{1}, \alpha_{2}, \alpha_{3}$, and α_{4} are the four distinct roots of the equation $x^{4}+2 x^{3}+2=0$. Determine the unordered set

$$
\left\{\alpha_{1} \alpha_{2}+\alpha_{3} \alpha_{4}, \alpha_{1} \alpha_{3}+\alpha_{2} \alpha_{4}, \alpha_{1} \alpha_{4}+\alpha_{2} \alpha_{3}\right\}
$$

Problem 3.2 (BAMO 2012 Problem 7). Find all nonzero polynomials $P(x)$ with integer coefficients that satisfy the following property: whenever a and b are relatively prime integers, then $P(a)$ and $P(b)$ are relatively prime as well. Prove that your answer is correct. (Two integers are relatively prime if they have no common prime factors. For example, -70 and 99 are relatively prime, while -70 and 15 are not relatively prime.)

Problem 3.3 (BAMO 2017 Problem 5). Call a number T persistent if the following holds: Whenever a, b, c, d are real numbers different from 0 and 1 such that

$$
a+b+c+d=T
$$

and

$$
\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}=T
$$

we also have

$$
\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}+\frac{1}{1-d}=T
$$

What numbers are persistent?
Problem 3.4 (USAMO 1995 Problem 4). Suppose $q_{0}, q_{1}, q_{2}, \ldots$ is an infinite sequence of integers satisfying the following two conditions:

- $m-n$ divides $q_{m}-q_{n}$ for $m>n \geq 0$,
- there is a polynomial P such that $\left|q_{n}\right|<P(n)$ for all n.

Prove that there is a polynomial Q such that $q_{n}=Q(n)$ for all n.
Problem 3.5 (Putnam 2019 Problem B5). Let F_{m} be the m th Fibonacci number, defined by $F_{1}=F_{2}=1$ and $F_{m}=F_{m-1}+F_{m-2}$ for all $m \geq 3$. Let $p(x)$ be the polynomial of degree 1008 such that $p(2 n+1)=F_{2 n+1}$ for $n=0,1,2, \ldots, 1008$. Find integers j and k such that $p(2019)=F_{j}-F_{k}$.

