
Olympiads Week 5: Polynomials 2
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10/29/23

Remember to write down your solutions, as proofs. You don’t have to start by writing out a
full proof to every problem you try, but once you’ve solved a problem or two, take a few minutes to
write out a proof as if this was being graded at an Olympiad.

Problem 0.1 (Putnam 2005 B1). Find a nonzero polynomial P (x, y) such that for all a ∈ R,
P (bac, b2ac) = 0.

(bxc is the greatest integer with bxc ≤ x.)

1 Viète’s Formulas

Non-competition problems in this section are from Putnam and Beyond.

Theorem 1.1 (Viète’s Formulas). Let P (x) = anx
n + · · ·+ a0 be a polynomial with coefficients in

C. Then the fundamental theorem of algebra tells us that we can factor it as

P (x) = an(x− x1) . . . (x− xn)

for some complex roots x1, . . . , xn.
Viète’s Formulas say that

(−1)k
an−k

an
= Sk(x1, . . . , xn),

where Sk(x1, . . . , xn) is the elementary symmetric polynomial of degree k, meaning it is the sum of
all distinct products of k distinct variables in x1, . . . , xn.

Most famously, in the cases k = 1, k = n, we get

−an−1

an
= x1 + · · ·+ xn

and
(−1)n

a0
an

= x1 . . . xn.

Problem 1.2 (AIME II 2008 Problem 7). Let r, s, and t be the three roots of the equation

8x3 + 1001x+ 2008 = 0.

Find (r + s)3 + (s+ t)3 + (t+ r)3.

Problem 1.3. Find the zeros of the polynomial P (x) = x4 − 6x3 + 18x2 − 30x+ 25 knowing that
the sum of two of them is 4.

Problem 1.4. Let P (x) = xn + an−1x
n−1 + · · · + a0 be a polynomial of degree n ≥ 3. Knowing

that an−1 = −
(
n
1

)
, an−2 =

(
n
2

)
, and that all roots are real, find the remaining coefficients.
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Problem 1.5. Let a, b, c be real numbers. Show that a ≥ 0, b ≥ 0, and c ≥ 0 if and only if
a+ b+ c ≥ 0, ab+ bc+ ca ≥ 0, and abc ≥ 0.

Problem 1.6 (BAMO 2022 Problem 5). Sofiya and Marquis are playing a game. Sofiya announces
to Marquis that she’s thinking of a poly- nomial of the form f(x) = x3 + px+ q with three integer
roots that are not necessarily distinct. She also explains that all of the integer roots have absolute
value less than (and not equal to) N , where N is some fixed number which she tells Marquis. As a
“move” in this game, Marquis can ask Sofiya about any number x and Sofiya will tell him whether
f(x) is positive, negative, or zero. Marquis’s goal is to figure out Sofiya’s polynomial. If N = 3 · 2k
for some positive integer k, prove that there is a strategy which allows Marquis to identify the
polynomial after making at most 2k + 1 “moves”.

2 Irreducible Polynomials

Non-competition problems in this section are from Sucharit Sarkar’s Math 100.

Problem 2.1. Show that x4a+x4b+1+x4c+2+x4d+3, where a, b, c, d are positive integers, is divisible
by x3 + x2 + x+ 1.

Hint: x3 + x2 + x+ 1 = (x2 + 1)(x+ 1).

If f(x) is an integer polynomial, we say that it’s irreducible when there are no nonconstant
polynomials g(x) and h(x) with f(x) = g(x)h(x).

Here are two results that are useful in factoring polynomials with integer coefficients into irre-
ducibles.

Theorem 2.2 (Rational-Root Theorem). If P (x) = anx
n + · · · + a0 is a polynomial with integer

coefficients, and if the rational number r
s (r and s are relatively prime) is a root of P (x) = 0, then

r divides a0 and s divides an.

Lemma 2.3 (Gauss’s Lemma). Let P (x) be a polynomial with integer coefficients. If P (x) can be
factored into a product of two polynomials with rational coefficients, then P (x) can be factored into
a product of two polynomials with integer coefficients.

Problem 2.4. Let f(x) = anx
n + · · ·+ a0 be a polynomial of degree n with integral coefficients. If

a0, an and f(1) are odd, prove that f(x) = 0 has no rational roots.

Problem 2.5. For what integer a does x2 − x+ a divide x13 + x+ 90?

2.1 Eisenstein’s Criterion

As a hint for an IMO problem, let’s prove a tool called Eisenstein’s Criterion that helps determine
when integer polynomials are irreducible.

Problem 2.6. Prove Eisenstein’s Criterion:
Let f(x) =

∑n
i=0 aix

i be an integer polynomial, and let p be a prime such that

• For i < n, p|ai

• p 6 |an

• p2 6 |a0.

Then f(x) is irreducible.

Problem 2.7 (IMO 1993 Problem 1). Let n > 1 be an integer. Prove that there are no nonconstant
polynomials g(x) and h(x) with integer coefficients such that

g(x)h(x) = xn + 5xn−1 + 3.
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3 Competition Problems

Problem 3.1 (HMMT 2007). The complex numbers α1, α2, α3, and α4 are the four distinct roots
of the equation x4 + 2x3 + 2 = 0. Determine the unordered set

{α1α2 + α3α4, α1α3 + α2α4, α1α4 + α2α3}.

Problem 3.2 (BAMO 2012 Problem 7). Find all nonzero polynomials P (x) with integer coefficients
that satisfy the following property: whenever a and b are relatively prime integers, then P (a) and
P (b) are relatively prime as well. Prove that your answer is correct. (Two integers are relatively
prime if they have no common prime factors. For example, -70 and 99 are relatively prime, while
-70 and 15 are not relatively prime.)

Problem 3.3 (BAMO 2017 Problem 5). Call a number T persistent if the following holds: Whenever
a, b, c, d are real numbers different from 0 and 1 such that

a+ b+ c+ d = T

and
1

a
+

1

b
+

1

c
+

1

d
= T,

we also have
1

1− a
+

1

1− b
+

1

1− c
+

1

1− d
= T.

What numbers are persistent?

Problem 3.4 (USAMO 1995 Problem 4). Suppose q0, q1, q2, . . . is an infinite sequence of integers
satisfying the following two conditions:

• m− n divides qm − qn for m > n ≥ 0,

• there is a polynomial P such that |qn| < P (n) for all n.

Prove that there is a polynomial Q such that qn = Q(n) for all n.

Problem 3.5 (Putnam 2019 Problem B5). Let Fm be the mth Fibonacci number, defined by
F1 = F2 = 1 and Fm = Fm−1 +Fm−2 for all m ≥ 3. Let p(x) be the polynomial of degree 1008 such
that p(2n+ 1) = F2n+1 for n = 0, 1, 2, . . . , 1008. Find integers j and k such that p(2019) = Fj −Fk.
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