OLGA RADKO MATH CIRCLE: ADVANCED 3

FERNANDO FIGUEROA, ROHAN JOSHI, JOAQUÍN MORAGA, AND CALEB PARTIN

Worksheet 4: Polynomials over finite fields

In general we can have polynomials over more variables, and when we add and multiply them we have to consider the degrees of all the variables. $F[x, y]$ will be the set of polynomials over F with two variables.
Problem 4.0: Expand the following polynomials, each of them over $\mathbb{Z}[x, y], \mathbb{F}_{3}[x, y]$ and $\mathbb{F}_{5}[x, y]$

- $(x+y+1)(x+y+2)$
- $(x y+x)(y+2)$
- $(x+y+1)^{3}$

Solution 4.0:

For a polynomial $p(x, y)$ in $F[x, y]$ a solution is a pair (a, b) with a and b both in F, such that $p(a, b)=0$. Problem 4.1: Determine the solutions of these polynomials.

- $x^{3}+x^{2}-2 x-y$ in $\mathbb{F}_{3}[x, y]$
- $-x+y^{2}-y+1$ in $\mathbb{F}_{3}[x, y]$
- $x^{2}-1$ in $\mathbb{F}_{5}[x, y]$

Solution 4.1:

We can graph the solutions of polynomials in a grid $F \times F$
Problem 4.2: Graph the solutions of the polynomials from the previous problem. Graph them also in $\mathbb{Z}[x, y]$ and $\mathbb{R}[x, y]$. Compare these graphs.
Solution 4.2:

The degree of a monomial in $F[x, y]$ is the sum of its degree in x and its degree in y. A polynomial is called homogeneous if all of its monomials have the same degree. Finding the solutions of a homogeneous polynomial in $F[x, y]$ can be done by using an auxiliary variable $t=x / y$. For example, for the following polynomial in \mathbb{F}_{2} :

$$
x^{3}+x^{2} y+x y^{2}+y^{3}=y^{3}\left(\left(\frac{x}{y}\right)^{3}+\left(\frac{x}{y}\right)^{2}+\left(\frac{x}{y}\right)+1\right)=y^{3}\left(t^{3}+t^{2}+t+1\right)
$$

Because we used the auxiliary variable $t=x / y$, which is divided by y, we will only find the solutions where y isn't zero using this auxiliary variable. Therefore the only solutions with $y \neq 0$ make $t^{3}+t^{2}+t+t=0$, so $t=1$ and so $x=y=1$.We can see that if $y=0$, then $x=0$.Therefore the solutions are $(0,0)$ and $(1,1)$.
Problem 4.3: Determine the solutions of the following polynomials and graph them.

- $x^{3}+x^{2} y-2 x y^{2}-y^{3}$ in $\mathbb{F}_{3}[x, y]$
- $x^{3} y+y^{4}$ in $\mathbb{F}_{3}[x, y]$
- $x^{4}+x^{3}+x^{3} y+x^{2} y-2 x-2$ in $\mathbb{F}_{5}[x, y]$

Solution 4.3:

We say that a polynomial $p(x)$ is identically zero if $p(a)=0$ for any element a. Similarly, $p(x, y)$ is identically zero if $p(a, b)=0$ for any pair of elements (a, b).
Problem 4.4: Let F be finite field.

- Show that a non-zero polynomial in $\mathbb{Z}[x]$ is never identically zero.
- Show that a non-zero polynomial in $\mathbb{Z}[x, y]$ is never identically zero.
- Can a non-zero polynomial in $F[x]$ be identically zero, what can you say of the degree of this polynomial?
- Can a non-zero polynomial in $F[x, y]$ be identically zero, what can you say of the degree of this polynomial?

Solution 4.4:

Problem 4.5: Let F be a finite field. Show that in $F[x, y]$, there are irreducible polynomials of degree at least d for any positive number d.

Hint: Show that there are infinitely many distinct irreducible polynomials.
Solution 4.5:

Problem 4.6: Determine if the following polynomials are irreducible or factor them:

- $x^{4}+x^{3}+x^{2}+x-1$ in $\mathbb{F}_{3}[x, y]$
- $x^{4}+x^{3} y+x^{2} y^{2}+x y^{3}-y^{4}$ in $\mathbb{F}_{3}[x, y]$
- $x^{4}+x^{2} y^{2}+x y^{3}+y^{4}$ in $\mathbb{F}_{5}[x, y]$

Solution 4.6:

Any irreducible polynomial $p(x)$ of degree d in $\mathbb{F}_{p}[x]$ divides the polynomial $x^{p^{d}}-1$
Problem 4.7: Show that $x^{10}+x^{3}+1$ is irreducible in $\mathbb{F}_{2}[x]$.
Hint: Euclid's algorithm for greatest common divisors, also works for polynomials over a field.
Solution 4.7:

Problem 4.8: Find all irreducible polynomials of degree 5 in $\mathbb{F}_{2}[x]$ Solution 4.8:

UCLA Mathematics Department, Los Angeles, CA 90095-1555, USA.
Email address: fzamora@math.princeton.edu
UCLA Mathematics Department, Los Angeles, CA 90095-1555, USA.
Email address: rohansjoshi@math.ucla.edu
UCLA Mathematics Department, Box 951555, Los Angeles, CA 90095-1555, USA.
Email address: jmoraga@math.ucla.edu
UCLA Mathematics Department, Los Angeles, CA 90095-1555, USA.
Email address: ctpartin@math.ucla.edu

