Olympiads Week 4: Polynomials

ORMC

10/8/23

Remember to write down your solutions, as proofs. You don't have to start by writing out a full proof to every problem you try, but once you've solved a problem or two, take a few minutes to write out a proof as if this was being graded at an Olympiad.

1 Book Problems from Putnam and Beyond

In class, I explained how to use some guess-and-check or a determinant argument to come up the following factorization:

$$
a^{3}+b^{3}+c^{3}-3 a b c=(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-a c-b c\right)
$$

This factorization helps us with the first four problems.
Problem 1.1. Show that if x, y, z are distinct real numbers,

$$
\sqrt[3]{x-y}+\sqrt[3]{y-z}+\sqrt[3]{z-x} \neq 0
$$

Problem 1.2. What are the real solutions to

$$
\sqrt[3]{x-1}+\sqrt[3]{x}+\sqrt[3]{x+1}=0 ?
$$

Problem 1.3. Find all triples of positive integers x, y, z such that

$$
x^{3}+y^{3}+z^{3}-3 x y z=p
$$

where p is a prime greater than 3.
Problem 1.4. Let a, b, c be distinct positive integers such that $a b+b c+c a \geq 3 k^{2}-1$, where k is also a positive integer. Show that

$$
a^{3}+b^{3}+c^{3} \geq 3(a b c+3 k)
$$

Problem 1.5. If $n \geq 0$ is an integer, show that the following can't both be perfect cubes:

$$
n+3, n^{2}+3 n+3
$$

Problem 1.6. Show that

$$
\sqrt[3]{20+14 \sqrt{2}}+\sqrt[3]{20-14 \sqrt{2}}=4
$$

Problem 1.7. Let $P(x, y, z)$ be a polynomial. Show that

$$
P(x, y, z)+P(y, z, x)+P(z, x, y)-P(x, z, y)-P(y, x, z)-P(z, y, x)
$$

is divisible by $(x-y)(y-z)(x-z)$.

2 Competition Problems

Problem 2.1 (HMMT 2007). The complex numbers $\alpha_{1}, \alpha_{2}, \alpha_{3}$, and α_{4} are the four distinct roots of the equation $x^{4}+2 x^{3}+2=0$. Determine the unordered set

$$
\left\{\alpha_{1} \alpha_{2}+\alpha_{3} \alpha_{4}, \alpha_{1} \alpha_{3}+\alpha_{2} \alpha_{4}, \alpha_{1} \alpha_{4}+\alpha_{2} \alpha_{3}\right\}
$$

Problem 2.2 (BAMO 2012 Problem 7). Find all nonzero polynomials $P(x)$ with integer coefficients that satisfy the following property: whenever a and b are relatively prime integers, then $P(a)$ and $P(b)$ are relatively prime as well. Prove that your answer is correct. (Two integers are relatively prime if they have no common prime factors. For example, -70 and 99 are relatively prime, while -70 and 15 are not relatively prime.)
Problem 2.3 (BAMO 2017 Problem 5). Call a number T persistent if the following holds: Whenever a, b, c, d are real numbers different from 0 and 1 such that

$$
a+b+c+d=T
$$

and

$$
\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}=T
$$

we also have

$$
\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}+\frac{1}{1-d}=T
$$

What numbers are persistent?
Problem 2.4 (USAMO 1995 Problem 4). Suppose $q_{0}, q_{1}, q_{2}, \ldots$ is an infinite sequence of integers satisfying the following two conditions:

- $m-n$ divides $q_{m}-q_{n}$ for $m>n \geq 0$,
- there is a polynomial P such that $\left|q_{n}\right|<P(n)$ for all n.

Prove that there is a polynomial Q such that $q_{n}=Q(n)$ for all n.
Problem 2.5 (Putnam 2019 Problem B5). Let F_{m} be the m th Fibonacci number, defined by $F_{1}=F_{2}=1$ and $F_{m}=F_{m-1}+F_{m-2}$ for all $m \geq 3$. Let $p(x)$ be the polynomial of degree 1008 such that $p(2 n+1)=F_{2 n+1}$ for $n=0,1,2, \ldots, 1008$. Find integers j and k such that $p(2019)=F_{j}-F_{k}$.

2.1 Eisenstein's Criterion

If $f(x)$ is an integer polynomial, we say that it's irreducible when there are no nonconstant polynomials $g(x)$ and $h(x)$ with $f(x)=g(x) h(x)$. As a hint for an IMO problem, let's prove a tool called Eisenstein's Criterion that helps determine when integer polynomials are irreducible.

Problem 2.6. Prove Eisenstein's Criterion:
Let $f(x)=\sum_{i=0}^{n} a_{i} x^{i}$ be an integer polynomial, and let p be a prime such that

- For $i<n, p \mid a_{i}$
- $p \nmid a_{n}$
- $p^{2} \not \backslash a_{0}$.

Then $f(x)$ is irreducible.
Problem 2.7 (IMO 1993 Problem 1). Let $n>1$ be an integer. Prove that there are no nonconstant polynomials $g(x)$ and $h(x)$ with integer coefficients such that

$$
g(x) h(x)=x^{n}+5 x^{n-1}+3
$$

