
Olympiads Week 4: Polynomials

ORMC

10/8/23

Remember to write down your solutions, as proofs. You don’t have to start by writing out a
full proof to every problem you try, but once you’ve solved a problem or two, take a few minutes to
write out a proof as if this was being graded at an Olympiad.

1 Book Problems from Putnam and Beyond

In class, I explained how to use some guess-and-check or a determinant argument to come up the
following factorization:

a3 + b3 + c3 − 3abc = (a+ b+ c)(a2 + b2 + c2 − ab− ac− bc).

This factorization helps us with the first four problems.

Problem 1.1. Show that if x, y, z are distinct real numbers,

3
√
x− y + 3

√
y − z + 3

√
z − x 6= 0.

Problem 1.2. What are the real solutions to

3
√
x− 1 + 3

√
x+ 3
√
x+ 1 = 0?

Problem 1.3. Find all triples of positive integers x, y, z such that

x3 + y3 + z3 − 3xyz = p,

where p is a prime greater than 3.

Problem 1.4. Let a, b, c be distinct positive integers such that ab + bc + ca ≥ 3k2 − 1, where k is
also a positive integer. Show that

a3 + b3 + c3 ≥ 3(abc+ 3k).

Problem 1.5. If n ≥ 0 is an integer, show that the following can’t both be perfect cubes:

n+ 3, n2 + 3n+ 3

Problem 1.6. Show that
3

√
20 + 14

√
2 +

3

√
20− 14

√
2 = 4.

Problem 1.7. Let P (x, y, z) be a polynomial. Show that

P (x, y, z) + P (y, z, x) + P (z, x, y)− P (x, z, y)− P (y, x, z)− P (z, y, x)

is divisible by (x− y)(y − z)(x− z).
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2 Competition Problems

Problem 2.1 (HMMT 2007). The complex numbers α1, α2, α3, and α4 are the four distinct roots
of the equation x4 + 2x3 + 2 = 0. Determine the unordered set

{α1α2 + α3α4, α1α3 + α2α4, α1α4 + α2α3}.

Problem 2.2 (BAMO 2012 Problem 7). Find all nonzero polynomials P (x) with integer coefficients
that satisfy the following property: whenever a and b are relatively prime integers, then P (a) and
P (b) are relatively prime as well. Prove that your answer is correct. (Two integers are relatively
prime if they have no common prime factors. For example, -70 and 99 are relatively prime, while
-70 and 15 are not relatively prime.)

Problem 2.3 (BAMO 2017 Problem 5). Call a number T persistent if the following holds: Whenever
a, b, c, d are real numbers different from 0 and 1 such that

a+ b+ c+ d = T

and
1

a
+

1

b
+

1

c
+

1

d
= T,

we also have
1

1− a
+

1

1− b
+

1

1− c
+

1

1− d
= T.

What numbers are persistent?

Problem 2.4 (USAMO 1995 Problem 4). Suppose q0, q1, q2, . . . is an infinite sequence of integers
satisfying the following two conditions:

• m− n divides qm − qn for m > n ≥ 0,

• there is a polynomial P such that |qn| < P (n) for all n.

Prove that there is a polynomial Q such that qn = Q(n) for all n.

Problem 2.5 (Putnam 2019 Problem B5). Let Fm be the mth Fibonacci number, defined by
F1 = F2 = 1 and Fm = Fm−1 +Fm−2 for all m ≥ 3. Let p(x) be the polynomial of degree 1008 such
that p(2n+ 1) = F2n+1 for n = 0, 1, 2, . . . , 1008. Find integers j and k such that p(2019) = Fj −Fk.

2.1 Eisenstein’s Criterion

If f(x) is an integer polynomial, we say that it’s irreducible when there are no nonconstant polyno-
mials g(x) and h(x) with f(x) = g(x)h(x). As a hint for an IMO problem, let’s prove a tool called
Eisenstein’s Criterion that helps determine when integer polynomials are irreducible.

Problem 2.6. Prove Eisenstein’s Criterion:
Let f(x) =

∑n
i=0 aix

i be an integer polynomial, and let p be a prime such that

• For i < n, p|ai

• p 6 |an

• p2 6 |a0.

Then f(x) is irreducible.

Problem 2.7 (IMO 1993 Problem 1). Let n > 1 be an integer. Prove that there are no nonconstant
polynomials g(x) and h(x) with integer coefficients such that

g(x)h(x) = xn + 5xn−1 + 3.
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