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Remember to write down your solutions, as proofs. You don’t have to start by writing out a
full proof to every problem you try, but once you’ve solved a problem or two, take a few minutes to
write out a proof as if this was being graded at an Olympiad.

1 Practice Problems: Invariants

These problems can be solved using invariants. When there is some repeated process, rather than
studying what does change, we may want to look at what stays the same. This allows us to make
connections between the starting and ending positions, and we can rule out many possibilities this
way.

We’ll work through this one together:

Problem 1.1 (46th IMO). There are n markers, each with one side white and the other side black,
aligned in a row with their white sides up. At each step, if possible, we choose a marker with the
white side up (but not one of the outermost markers), remove it, and reverse the two neighboring
markers. Prove that one can reach a configuration with only two markers left if and only if n− 1 is
not divisible by 3.

Problem 1.2. Suppose we put pawns on opposite corners of a chessboard. Can you then cover the
remaining 62 squares of the chessboard with 31 non-overlapping 2× 1-square dominoes?

The rest of these problems are from Putnam and Beyond.

Problem 1.3. An ordered triple of numbers is given. It is permitted to perform the following
operation on the triple: to change two of them, say a and b, to (a + b)/

√
2 and (a − b)/

√
2. Is it

possible to obtain the triple (1,
√

2, 1 +
√

2) from the triple (2,
√

2, 1/
√

2) using this operation?

Problem 1.4. There is a heap of 1001 stones on a table. You are allowed to perform the following
operation: you choose one of the heaps containing more than one stone, throw away a stone from
the heap, then divide it into two smaller (not necessarily equal) heaps. Is it possible to reach a
situation in which all the heaps on the table contain exactly 3 stones by performing the operation
finitely many times?

Problem 1.5. The number 99 . . . 99 (having 1997 nines) is written on a blackboard. Each minute,
one number written on the blackboard is factored into two factors and erased, each factor is (inde-
pendently) increased or decreased by 2, and the resulting two numbers are written. Is it possible
that at some point all of the numbers on the blackboard are equal to 9?

Problem 1.6. Four congruent right triangles are given. One can cut one of them along the altitude
and repeat the operation several times with the newly obtained triangles. Prove that no matter how
we perform the cuts, we can always find among the triangles two that are congruent.
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2 Competition Problems

Problem 2.1 (BAMO 2011 Problem 1). Hugo plays a game: he places a chess piece on the top left
square of a 20 × 20 chessboard and makes 10 moves with it. On each of these 10 moves, he moves
the piece either one square horizontally (left or right) or one square vertically (up or down). After
the last move, he draws an X on the square that the piece occupies. When Hugo plays this game
over and over again, what is the largest possible number of squares that could eventually be marked
with an X? Prove that your answer is correct.

Problem 2.2 (BAMO 2008 Problem 1). Call a year ultra-even if all of its digits are even. Thus
2000, 2002, 2004, 2006, and 2008 are all ultra-even years. They are all 2 years apart, which is the
shortest possible gap. 2009 is not an ultra-even year because of the 9, and 2010 is not an ultra-even
year because of the 1.

• In the years between the years 1 and 10000, what is the longest possible gap between two
ultra-even years? Give an example of two ultra-even years that far apart with no ultra-even
years between them. Justify your answer.

• What is the second-shortest possible gap (that is, the shortest gap longer than 2 years) between
two ultra-even years? Again, give an example, and justify your answer.

Problem 2.3 (BAMO 2009 Problem 6). At the start of this problem, six frogs are sitting with
one at each of the six vertices of a regular hexagon. Every minute, we choose a frog to jump over
another frog using one of the two rules illustrated below. If a frog at point F jumps over a frog at
point P , the frog will land at point F ′ such that F, P , and F ′ are collinear and

• using Rule 1, F ′P = 2FP .

• using Rule 2, F ′P = FP/2.

It is up to us to choose which frog to take the leap and which frog to jump over.

1. If we only use Rule 1, is it possible for some frog to land at the center of the original hexagon
after a finite amount of time?

2. If both Rule 1 and Rule 2 are allowed (freely choosing which rule to use, which frog to jump,
and which frog it jumps over), is it possible for some frog to land at the center of the original
hexagon after a finite amount of time?

Problem 2.4 (BAMO 2012 Problem 6). Given a segment AB in the plane, choose on it a point M
different from A and B. Two equilateral triangles ∆AMC and ∆BMD in the plane are constructed
on the same side of segment AB. The circumcircles of the two triangles intersect in point M and
another point N . (The circumcircle of a triangle is the circle that passes through all three of its
vertices.)

1. Prove that lines AD and BC pass through point N.
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2. Prove that no matter where one chooses the point M along segment AB, all lines MN will pass
through some fixed point K in the plane.

Problem 2.5 (USAMO 2011 Problem 2). An integer is assigned to each vertex of a regular pentagon
so that the sum of the five integers is 2011. A turn of a solitaire game consists of subtracting an
integer m from each of the integers at two neighboring vertices and adding 2m to the opposite vertex,
which is not adjacent to either of the first two vertices. (The amount m and the vertices chosen
can vary from turn to turn.) The game is won at a certain vertex if, after some number of turns,
that vertex has the number 2011 and the other four vertices have the number 0. Prove that for any
choice of the initial integers, there is exactly one vertex at which the game can be won.

Problem 2.6 (USAMO 2015 Problem 4). Steve is piling m ≥ 1 indistinguishable stones on the
squares of an n× n grid. Each square can have an arbitrarily high pile of stones. After he finished
piling his stones in some manner, he can then perform stone moves, defined as follows. Consider any
four grid squares, which are corners of a rectangle, i.e. in positions (i, k), (i, l), (j, k), (j, l) for some
1 ≤ i, j, k, l ≤ n, such that i < j and k < l. A stone move consists of either removing one stone from
each of (i, k) and (j, l) and moving them to (i, l) and (j, k) respectively,j or removing one stone from
each of (i, l) and (j, k) and moving them to (i, k) and (j, l) respectively.

Two ways of piling the stones are equivalent if they can be obtained from one another by a
sequence of stone moves.

How many different non-equivalent ways can Steve pile the stones on the grid?

Problem 2.7 (Putnam 2010 Problem B3). There are 2010 boxes labeled B1, . . . , B2010, and 2010n
balls have been distributed among them, for some positive integer n. You may redistribute the balls
by a sequence of moves, each of which consists of choosing an i and moving exactly i balls from Bi

into any other box. For which values of n is it possible to reach the distribution with exactly n balls
in each box, regardless of the initial distribution of balls?

Problem 2.8. Let n ≥ 1 be an odd integer. Alice and Bob play the following game, taking
alternating turns, with Alice playing first. The playing area consists of n spaces, arranged in a line.
Initially all spaces are empty. At each turn, a player either

• places a stone in an empty space, or

• removes a stone from a nonempty space s, places a stone in the nearest empty space to the
left of s (if such a space exists), and places a stone in the nearest empty space to the right of
s (if such a space exists).

Furthermore, a move is permitted only if the resulting position has not occurred previously in
the game. A player loses if he or she is unable to move. Assuming that both players play optimally
throughout the game, what moves may Alice make on her first turn?
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