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Part 1: Random Walks
Consider the graph below. A particle sits on some node n. Every second, this particle moves left or
right with equal probability. Once it reaches node A or B, it stops.
We would like to compute the probability of our particle stopping at node A.

In other words, we want a function P (n) : N → [0, 1] that returns the probability that our particle
stops at A, where N is the set of nodes in G.

A x y B

Problem 1:
What are P (A) and P (B) in the graph above?
Note that these values hold for all graphs.

Solution

P (A) = 1 and P (B) = 0

Problem 2:
Find an expression for P (x) in terms of P (y) and P (A).
Find an expression for P (y) in terms of P (x) and P (B).

Solution

P (x) = P (A)+P (y)
2

P (y) = P (B)+P (x)
2

Problem 3:
Use the previous problems to find P (x) and P (y).

Solution

P (x) = 2/3

P (y) = 1/3
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Problem 4:
Say we have a graph G and a particle on node x with neighbors v1, v2, ..., vn.
Assume that our particle is equally likely to travel to each neighbor.
Find P (x) in terms of P (v1), P (v2), ..., P (vn).

Solution

We have
P (x) =

P (v1) + P (v2) + ...+ P (vn)

n

Problem 5:
How can we use Problem 4 to find P (n) for any n?

Solution

If we write an equation for each node other than A and B, we have a system of |N | − 2 linear
equations in |N | − 2 variables.
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Problem 6:
Find P (n) for all nodes in the graph below.

A x

y B

Solution

P (x) = 1/2 for both x and y.

Problem 7:
Find P (n) for all nodes in the graph below.
Note that this is the graph of a cube with A and B on opposing vertices.

q r

s B

A z

x y

Solution

P (z, q, and x) = 3/5
P (s, r, and y) = 2/5
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Definition 8:
Let us now take a look at weighted graphs. The problem remains the same: we want to compute the
probability that our particle stops at node A, but our graphs will now feature weighted edges. The
probability of our particle taking a certain edge is proportional to that edge’s weight.

For example, if our particle is on node y of the graph below, it has a 3
8 probability of moving to x

and a 1
8 probability of moving to z.

Note that 3 + 3 + 1 + 1 = 8.

3
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Problem 9:
Say a particle on node x has neighbors v1, v2, ..., vn with weights w1, w2, ..., wn.
The edge (x, v1) has weight w1. Find P (x) in terms of P (v1), P (v2), ..., P (vn).

Solution

P (x) =
w1P (v1) + w2P (v2) + ...+ wnP (vn)

w1 + w2 + ...+ wn
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Problem 10:
Consider the following graph. Find P (x), P (y), and P (z).

1

12

1

1 B

x y

z

A

Solution

P (x) = 7/12
P (y) = 6/12
P (z) = 5/12

Problem 11:
Consider the following graph.
What expressions can you find for P (w), P (x), P (y), and P (z)?

2

1

2

2

1

1
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A

w x

y z

B

Solve this system of equations.
Hint: Use symmetry. P (w) = 1− P (z) and P (x) = 1− P (y). Why?

Solution

P (w) = 3/4
P (x) = 2/4
P (y) = 2/4
P (z) = 1/4
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Part 2: Circuits
An electrical circuit is a graph with a few extra properties, called current, voltage, and resistance.

• Voltage is a function V (n) : N → R that assigns a number to each node of our graph.
In any circuit, we pick a “ground” node, and define the voltage1 there as 0.
We also select a “source” node, and define its voltage as 1.
Intuitively, you could say we’re connecting the ends of a 1-volt battery to our source and
ground nodes.

• Current is a function I(e→) : N ×N → R that assigns a number to each oriented edge e→ in
our graph. An “oriented edge” is just an ordered pair of nodes (n1, n2).
Current through an edge (a, b) is a measure of the flow of charge from a to b.
Naturally, I(a, b) = −I(b, a).

• Resistance is a function R(e) : N ×N → R+
0 that represents a certain edge’s resistance to the

flow of current through it.
Resistance is a property of each link between nodes, so order doesn’t matter: R(a, b) = R(b, a).

It is often convenient to compare electrical circuits to systems of pipes. Say we have a pipe from
point A to point B. The size of this pipe represents resistance (smaller pipe =⇒ more resistance),
the pressure between A and B is voltage, and the speed water flows through it is to current.

Definition 12: Ohm’s law
With this “pipe” analogy in mind, you may expect that voltage, current, and resistance are related: if
we make our pipe bigger (and change no other parameters), we’d expect to see more current. This is
indeed the case! Any circuit obeys Ohm’s law, stated below:

V (a, b) = I(a, b)×R(a, b)

V (a, b) is the voltage between nodes a and b. If this doesn’t make sense, read the footnote below.
In this handout, it will be convenient to write V (a, b) as V (a)− V (b).

Definition 13: Kirchoff’s law
The second axiom of electrical circuits is also fairly simple. Kirchoff’s law states that the sum of all
currents connected to a given edge is zero. You can think of this as “conservation of mass”: nodes in
our circuit do not create or destroy electrons, they simply pass them around to other nodes.
Formally, we can state this as follows:

Let x be a node in our circuit and Bx the set of its neighbors. We than have∑
b∈Bx

I(x, b) = 0

which must hold at every node except the source and ground vertices.
Hint: Keep this exception in mind, it is used in a few problems later on.

1In the real world, voltage is always measured between two points on a circuit. Voltage is defined as the difference in
electrical charge between two points. Here, all voltages are measured with respect to our “ground” node.

This detail isn’t directly relevant to the problems in this handout, so you mustn’t worry about it today.
Just remember that the electrical definitions here are a significant oversimplification of reality.
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Consider the circuit below. This the graph from Problem 1, turned into a circuit by:
• Replacing all edges with 1Ω resistors
• Attaching a 1 volt battery between A and B

Note that the battery between A and B isn’t really an edge. It exists only to create a potential
difference between the two nodes.

A (source) 1Ω
x

1Ω y 1Ω B (ground)

−
1 Volt

+

Problem 14:
From the circuit diagram above, we immediatly know that V (A) = 1 and V (B) = 0.
What equations related to the currents out of x and y does Kirchoff’s law give us?

Problem 15:
Use Ohm’s law to turn the equations from Problem 14 into equations about voltage and resistance.
Find an expression for V (x) and V (y) in terms of other voltages, then solve the resulting system of
equations. Does your result look familiar?

Solution

V (x) =
V (A)− V (y)

2

V (y) =
V (x)− V (B)

2
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Part 3: The Equivalence
In the last problem, we found that the equations for V (x) were the same as the equations for P (x) on
the same graph. It turns out that this is true in general: problems about voltage in circuits directly
correspond to problems about probability in graphs. We’ll spend the next section proving this fact.

Definition 16:
For the following problems, conductance will be more convenient than resistance.
The definition of conductance is quite simple:

C(a, b) =
1

R(a, b)

Aside: Resistance is usually measured in Ohms, denoted Ω.
A few good-natured physicists came up with the “mho” (denoted Ω) as a unit of conductance, which
is equivalent to an inverse Ohm. Unfortunately, NIST discourages the use of Mhos in favor of the
equivalent (and less amusing) “Siemens.”

Problem 17:
Let x be a node in a graph.
Let Bx be the set of x’s neighbors, w(x, y) the weight of the edge between nodes x and y, and Wx the
sum of the weights of all edges connected to x.
We saw earlier that the probability function P satisfies the following sum:

P (x) =
∑
b∈Bx

(
P (b)× w(x, b)

Wx

)
This was never explicitly stated, but is noted in Definition 8.

Use Ohm’s and Kirchoff’s laws to show that the voltage function V satisfies a similar sum:

V (x) =
∑
b∈Bx

(
V (b)× C(x, b)

Cx

)
where C(x, b) is the conductance of edge (x, b) and Cx is the sum of the conductances of all edges
connected to x.

Solution

First, we know that ∑
b∈Bx

I(x, b) = 0

for all nodes x. Now, substitute I(x, b) = V (x)−V (b)
R(x,y) and pull out V (x) terms to get

V (x)
∑
b∈Bx

1

R(x, b)
−

∑
b∈Bx

V (b)

R(x, b)
= 0

Rearranging and replacing R(x, b)−1 with C(x, b) and
∑

C(x, b) with Cx gives us

V (x) =
∑
b∈Bx

V (b)
C(x, b)

Cx

8



Thus, if w(a, b) = C(a, b), P and V satisfy the same system of linear equations. To finish proving
that P = V , we now need to show that there can only be one solution to this system. We will do this
in the next two problems.

Problem 18:
Let q be a solution to the following equations, where x 6= a, b.

q(x) =
∑
b∈Bx

(
q(b)× w(x, b)

Wx

)
Show that the maximum and minimum of q are q(a) and q(b) (not necessarily in this order).

Solution

The domain of q is finite, so a maximum and minimum must exist.

Since q(x) is a weighted average of all q(b), b ∈ Bx, there exist y, z ∈ Bx satisfying
q(y) ≤ q(x) ≤ q(z). Therefore, none of these can be an extreme point.

A and B are the only vertices for which this may not be true, so they must be the minimum
and maximum.

Problem 19:
Let p and q be functions that solve our linear system
and satisfy p(A) = q(A) = 1 and p(B) = q(B) = 0.
Show that the function p− q satisfies the equations in Problem 18,
and that p(x)− q(x) = 0 for every x. Note that p(x)− q(x) = 0 ∀x =⇒ p = q

Solution

The equations in Problem 18 for p and q directly imply that

[p− q](x) =
∑
b∈Bx

(
[p− q](b)× w(x, b)

Wx

)
Which are the equations from Problem 18 for (p− q).

Hence, the minimum and maximum values of p− q are [p− q](a) = 1− 1 = 0 and
[p− q](b) = 1− 1 = 0.

Therefore p(x)− q(x) = 0 for all x, so p(x) = q(x).
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Part 4: Effective Resistance
As we have seen, calculating the properties of a circuit by creating an equation for each vertex is a
fairly time-consuming ordeal. Fortunately, there is a better strategy we can use.

Consider a graph (or a circuit) with source and ground vertices. All parts of the circuit that aren’t
these two vertices are hidden inside a box, as shown below:

A (source) B (ground)

−
1 Volt

+

Unknown circuit

What do we know about this box? If this was a physical system, we’d expect that the current flowing
out of A is equal to the current flowing into B.

Problem 20:
Using Kirchoff’s law, show that the following equality holds.
Remember that we assumed Kirchoff’s law holds only at nodes other than A and B.
Note: As before, Bx is the set of neighbors of x. Naturally, BB is the set of neighbors of B.∑

b∈BA

I(S, b) =
∑
b∈BB

I(b,B)

Solution

Add Kirchoff’s law for all vertices x 6= A to get∑
∀x

( ∑
b∈Bx

I(x, b)

)
= 0

This sum counts both I(x, y) and I(x, y) for all edges x, y, except I(x, y) when x is A or B.
Since I(a, b) + I(b, a) = 0, these cancel out, leaving us with∑

b∈BA

I(A, b) +
∑
b∈BB

I(B, b) = 0

Rearrange and use the fact that I(a, b) = −I(b, a) to get the final equation.

If we call this current IA =
∑

b∈BA
I(A, b), we can pretend that the box contains only one resistor,

carrying IA units of current. Using this information and Ohm’s law, we can calculate the effective
resistance of the box.
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Problem 21: Resistors in parallel
Using Ohm’s law and Kirchoff’s law, calculate the effective resistance Reff of the circuit below.

A (source)

R1

Rn

B (ground)

−
1 Volt

+

... a few more ...

Solution

Let Ii be the current across resistor Ri, from left to right.
By Ohm’s law, Ii = V

Ri
(Note that V = 1 in this problem).

The source current is then IA =
∑n

i=1 =
(
V
)(

1
R1

+ 1
R2

+ ...+ 1
Rn

)
. Applying Ohm’s law

again, we find that
Reff =

1
1
R1

+ 1
R2

+ ...+ 1
Rn

Problem 22: Resistors in series
Using Ohm’s law and Kirchoff’s law, calculate the effective resistance Rtotal of the circuit below.

A (source) R1 Rn B (ground)

−
1 Volt

+

... a few more ...

Solution

This solution uses the same notation as the solution for Problem 21.

By Kirchoff’s law, all Ii are equal in this circuit. Let’s say I = Ii.
Let Vi denote the voltage at the node to the left of Ri.
By Ohm’s law, Vi − Vi+1 = IRi.

The sum of this over all i telescopes, and we get V (A)− V (B) = I(R1 +R2 + ...+Rn).
Dividing, we find that

Reff = R1 +R2 + ...+Rn
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We can now use effective resistance to simplify complicated circuits. Whenever we see the above
constructions (resistors in parellel or in series) in a graph, we can replace them with a single resistor
of appropriate value.

Problem 23:
Consider the following circuits. Show that the triangle has the same effective resistance as the star if

• x = R1R2 +R1R3 +R2R3

• S1 = x/R3

• S2 = x/R1

• S3 = x/R2

The star:

R
1

R2

R
3

a

b

c

The triangle:

S
1

S2

S3

a

b

c
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Problem 24:
Suppose we construct a circuit by connecting the 2n vertices of an n-dimensional cube with 1Ω
resistors. If we place A and B at opposing vertices, what is the effective resistance of this circuit?
Bonus: As n → ∞, what happens to Reff?
Note: Leave your answer as a sum.

Solution

Think of the vertices of the n-dimensional cube as n-bit binary strings, with A at 000...0
and B at 111...1. We can divide our cube into n+ 1 layers based on how many ones are in
each node’s binary string, with the kth layer having k ones. By symmetry, all the nodes in
each layer have the same voltage. This means we can think of the layers as connected in
series, with the resistors inside each layer connected in parellel.

There are
(
n
k

)
nodes in the kth layer. Each node in this layer has k ones, so there are n− k

ways to flip a zero to get to the (k + 1)th layer. In total, there are
(
n
k

)
(n− k) parellel

connections from the kth layer to the (k + 1)th layer, creating an effective resistance of

1(
n
k

)
(n− k)

The total effective resistance is therefore
n−1∑
k=0

1(
n
k

)
(n− k)

To calculate the limit as n → ∞, note that(
n

k

)
(n− k) =

n!

(n− k − 1)!× k!
= n

(
n− 1

k

)
So, the sum is

1

n

n−1∑
k=0

1(
n−1
k

)

Note that for n ≥ 4,
(
n
k

)
≥

(
n
2

)
for 2 ≤ k ≤ n− 2, so

n∑
k=0

1(
n
k

) ≤ 2 +
2

n
+

n− 3(
n
2

)
which approaches 2 as n → ∞. So, Reff → 0 as n → ∞.

13


