OLGA RADKO MATH CIRCLE: ADVANCED 3

FERNANDO FIGUEROA, ROHAN JOSHI, JOAQUÍN MORAGA, AND CALEB PARTIN

Worksheet 2:

For a prime number p, we define \mathbb{F}_{p} (read as 'the field of p elements) to'be the set of integers $\{0,1,2, \ldots, p-1\}$. In \mathbb{F}_{p} we define the sum of two numbers $a+b$, to be the only integer c in the set $\{0,1,2, \ldots, p-1\}$, such that $c \equiv a+b$ $(\bmod p)$. In the same way $a \cdot b$ is the only integer d in the set $\{0,1,2, \ldots, p-1\}$, such that $d \equiv a \cdot b(\bmod p)$.
Problem 2.0: Simplify the following expressions

- $(2+3) \cdot 4$ in \mathbb{F}_{5}
- $5-(2+3) \cdot 4$ in \mathbb{F}_{7}
- $10+(3+2)^{2}$ in \mathbb{F}_{11}
- $2+(1+2 \cdot 2)^{4}$ in \mathbb{F}_{3}

Solution 2.0:

For the field $\mathbb{F}_{p}, 0$ is called the "additive identity", because $a+0=a=0+a .1$ is called the "multiplicative identity", because $a \cdot 1=a=1 \cdot a$.

We say that c has an additive inverse d, if $c+d=0$.
Problem 2.1: Show that in \mathbb{F}_{2} and \mathbb{F}_{3}, every element has an additive inverse. Does this hold true for any \mathbb{F}_{p} ?
Solution 2.1:

We say that a non-zero element a is a zero-divisor if there exists some non-zero element b, such that $a \cdot b=0$. Problem 2.2: Is any non-zero element in \mathbb{F}_{p} a zero-divisor?
Solution 2.2:

More generally, we can define $\mathbb{Z} / m \mathbb{Z}$ to be the set $\{0,1,2, \ldots, m-1\}$ with addition and multiplication defined using congruence $\bmod m$, for any positive integer m. Hence \mathbb{F}_{p} is the same as $\mathbb{Z} / p \mathbb{Z}$.
Problem 2.3: Do all elements have an additive inverse in $\mathbb{Z} / m \mathbb{Z}$?
Solution 2.3:

We say that b has a multiplicative inverse a if $b \cdot a=1$.
Problem 2.4: Find the multiplicative inverses for all non-zero elements in $\mathbb{Z} / 5 \mathbb{Z}$.
Solution 2.4:

Problem 2.5: Which numbers in $\mathbb{Z} / 4 \mathbb{Z}$ have a multiplicative inverse? Which elements in $\mathbb{Z} / 4 \mathbb{Z}$ are zero-divisors. Solution 2.5:

Prove that if an element has a multiplicative inverse, then it cannot be a zero-divisor. Problem 2.6:
Solution 2.6:

A "field" is defined as a set F, with two operations "addition" and "multiplication" that satisfy the following properties:

- Associativity of addition and multiplication: $a+(b+c)=(a+b)+c$, and $a \cdot(b \cdot c)=(a \cdot b) \cdot c$.
- Commutativity of addition and multiplication: $a+b=b+a$, and $a \cdot b=b \cdot a$.
- Additive and multiplicative identity: there exist two distinct elements 0 and 1 in F such that $a+0=a$ and $a \cdot 1=a$.
- Additive inverses: for every a in F, there exists an element in F, denoted $-a$, called the additive inverse of a, such that $a+(-a)=0$.
- Multiplicative inverses: for every non-zero a in F, there exists an element in F, denoted by a^{-1}, called the multiplicative inverse of a, such that $a \cdot a^{-1}=1$.
- Distributivity of multiplication over addition: $a \cdot(b+c)=(a \cdot b)+(a \cdot c)$.

Problem 2.7:

- Show that \mathbb{F}_{p} are fields for any prime number p.
- Show that $\mathbb{Z} / m \mathbb{Z}$ is not a field whenever m is not prime.

Solution 2.7:

The goal of the next problems is to create the field of 4 elements.
We will define \mathbb{F}_{4} to be the set of degree 0 or 1 polynomials, with coefficients in \mathbb{F}_{2}, define the addition of two polynomials $(a x+b)+(d x+e)=(a+d) x+(b+e)$, i.e. add them as you would do with integer coefficients, and then reduce mod p .
Problem 2.8: Prove that every element has an additive inverse in \mathbb{F}_{4}
Solution 2.8:

We define the multiplication in the following way. To multiply polynomials $f(x)$ and $g(x)$, first multiply them as if the coefficients where integers. Then we take the residue (also known as remainder) after dividing by $x^{2}+x+1$ and we finally reduce the coefficients modulo 2
Problem 2.9: Prove that this set is a field. If we took the residue after dividing by $x^{2}+1$. Would this still be a field?
Solution 2.9:

Problem 2.10:

Can you create the field of 9 elements, by using degree 0 or 1 polynomials with coefficients in \mathbb{F}_{3} ?
Hint: You need to take the residue after dividing by a degree two polynomial that cannot be written as the product of two degree one polynomials.

Can you extend this construction to create fields of p^{2} elements?
Solution 2.10:

We have created fields of $2,3,4,5,7,9$ elements.
Problem 2.11: Can there be a field of 6 elements? Can there be a field of 8 elements?
Solution 2.11:

UCLA Mathematics Department, Los Angeles, CA 90095-1555, USA.
Email address: fzamora@math.princeton.edu
UCLA Mathematics Department, Los Angeles, CA 90095-1555, USA.
Email address: rohansjoshi@math.ucla.edu
UCLA Mathematics Department, Box 951555, Los Angeles, CA 90095-1555, USA.
Email address: jmoraga@math.ucla.edu
UCLA Mathematics Department, Los Angeles, CA 90095-1555, USA.
Email address: ctpartin@math.ucla.edu

