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This week, remember to write down your solutions, as proofs. You don’t have to start by writing
out a full proof to every problem you try, but once you’ve solved a problem or two, take a few
minutes to write out a proof as if this was being graded at an Olympiad.

1 Practice Problems

Problem 1.1. A group of n people play a round-robin tournament - every team plays every other
team exactly once, and each game ends in either a win or a loss. Show that it is possible to label the
players P1, P2, . . . , Pn in such a way that P1 defeated P2, P2 defeated P3, and so on through Pn−1

defeated Pn.

Problem 1.2. Show that if a round-robin tournament has an odd number of teams, it is possible
for every team to win exactly half its games.

1.1 From Problem-Solving Through Problems

Problem 1.3. Find positive numbers n and a1, a2, . . . , an such that a1 + · · · + an = 1000 and the
product a1a2 . . . an is as large as possible.

Problem 1.4. Determine the number of odd binomial coefficients in the expansion of (x + y)100.

1.2 From USSR Olympiad Problem Book

Problem 1.5. Prove that the product of four consecutive positive integers is one less than a perfect
square.

Problem 1.6. Calculate the following sums:

1

1 · 2
+

1

2 · 3
+ · · ·+ 1

(n− 1)n

1

1 · 2 · 3
+

1

2 · 3 · 4
+ · · ·+ 1

(n− 2)(n− 1)n

1

1 · 2 · 3 · 4
+

1

2 · 3 · 4 · 5
+ · · ·+ 1

(n− 3)(n− 2)(n− 1)n

2 Competition Problems

Problem 2.1 (BAMO 2008 Problem 5). N teams participated in a national basketball championship
in which every two teams played exactly one game. Of the N teams, 251 are from California. It
turned out that a Californian team Alcatraz is the unique Californian champion (Alcatraz has won
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more games against Californian teams than any other team from California). How- ever, Alcatraz
ended up being the unique loser of the tournament because it lost more games than any other team
in the nation! What is the smallest possible value for N?

Problem 2.2 (BAMO 2013 Problem 7). Let F1, F2, F3 . . . be the Fibonacci sequence, the sequence
of positive integers with F1 = F2 = 1 and Fn+2 = Fn+1 + Fn for all n ≥ 1. A Fibonacci number is
by definition a number appearing in this sequence. Let P1, P2, P3, . . . be the sequence consisting of
all the integers that are products of two Fibonacci numbers (not necessarily distinct), in increasing
order. The first few terms are

1, 2, 3, 4, 5, 6, 8, 9, 10, 13, . . .

since, for example 3 = 1 · 3, 4 = 2 · 2, and 10 = 2 · 5. Consider the sequence Dn of successive
differences of the Pn sequence, where Dn = Pn+1 − Pn for n ≥ 1. The first few terms of Dn are

1, 1, 1, 1, 1, 2, 1, 1, 3, . . .

Prove that every number in Dn is a Fibonacci number.

Problem 2.3 (USAMO 2008 Problem 1). Prove that for each positive integer n, there are pairwise
relatively prime integers k0, k1 . . . , kn, all strictly greater than 1, such that k0k1 · · · kn − 1 is the
product of two consecutive integers.

Problem 2.4 (USAMO 2003 Problem 6). At the vertices of a regular hexagon are written six
nonnegative integers whose sum is 2003. Bert is allowed to make moves of the following form: he
may pick a vertex and replace the number written there by the absolute value of the difference
between the numbers written at the two neighboring vertices. Prove that Bert can make a sequence
of moves, after which the number 0 appears at all six vertices.

Problem 2.5 (USAMO 2011 Problem 6). Let A be a set with |A| = 225, meaning that A has 225
elements. Suppose further that there are eleven subsets A1, . . . , A11 of A such that |Ai| = 45 for
1 ≤ i ≤ 11 and |Ai ∩ Aj | = 9 for 1 ≤ i < j ≤ 11. Prove that |A1 ∪ A2 ∪ · · · ∪ A11| ≥ 165, and give
an example for which equality holds.

Problem 2.6 (Putnam 2021 Problem A3). Determine all positive integers N for which the sphere

x2 + y2 + z2 = N

has an inscribed regular tetrahedron whose vertices have integer coordinates.

Problem 2.7 (Putnam 2003 Problem A1). Let n be a fixed positive integer. How many ways are
there to write n as a sum of positive integers,

n = a1 + a2 + · · ·+ ak,

with k an arbitrary positive integer and a1 ≤ a2 ≤ · · · ≤ ak ≤ a1 + 1? For example, with n = 4
there are four ways: 4, 2+2, 1+1+2, 1+1+1+1.

Problem 2.8 (Putnam 2003 Problem A5). A Dyck n-path is a lattice path of n upsteps (1, 1) and
n downsteps (1,−1) that starts at the origin O and never dips below the x-axis. A return is a
maximal sequence of contiguous downsteps that terminates on the x-axis. For example, the Dyck
5-path illustrated has two returns, of length 3 and 1 respectively.

O

Show that there is a one-to-one correspondence between the Dyck n-paths with no return of even
length and the Dyck (n− 1)-paths.
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