Olympiads Week 2

ORMC
10/8/23

This week, remember to write down your solutions, as proofs. You don't have to start by writing out a full proof to every problem you try, but once you've solved a problem or two, take a few minutes to write out a proof as if this was being graded at an Olympiad.

1 Practice Problems

Problem 1.1. A group of n people play a round-robin tournament - every team plays every other team exactly once, and each game ends in either a win or a loss. Show that it is possible to label the players $P_{1}, P_{2}, \ldots, P_{n}$ in such a way that P_{1} defeated P_{2}, P_{2} defeated P_{3}, and so on through P_{n-1} defeated P_{n}.

Problem 1.2. Show that if a round-robin tournament has an odd number of teams, it is possible for every team to win exactly half its games.

1.1 From Problem-Solving Through Problems

Problem 1.3. Find positive numbers n and $a_{1}, a_{2}, \ldots, a_{n}$ such that $a_{1}+\cdots+a_{n}=1000$ and the product $a_{1} a_{2} \ldots a_{n}$ is as large as possible.
Problem 1.4. Determine the number of odd binomial coefficients in the expansion of $(x+y)^{100}$.

1.2 From USSR Olympiad Problem Book

Problem 1.5. Prove that the product of four consecutive positive integers is one less than a perfect square.

Problem 1.6. Calculate the following sums:

$$
\begin{gathered}
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\cdots+\frac{1}{(n-1) n} \\
\frac{1}{1 \cdot 2 \cdot 3}+\frac{1}{2 \cdot 3 \cdot 4}+\cdots+\frac{1}{(n-2)(n-1) n} \\
\frac{1}{1 \cdot 2 \cdot 3 \cdot 4}+\frac{1}{2 \cdot 3 \cdot 4 \cdot 5}+\cdots+\frac{1}{(n-3)(n-2)(n-1) n}
\end{gathered}
$$

2 Competition Problems

Problem 2.1 (BAMO 2008 Problem 5). N teams participated in a national basketball championship in which every two teams played exactly one game. Of the N teams, 251 are from California. It turned out that a Californian team Alcatraz is the unique Californian champion (Alcatraz has won
more games against Californian teams than any other team from California). How- ever, Alcatraz ended up being the unique loser of the tournament because it lost more games than any other team in the nation! What is the smallest possible value for N ?
Problem 2.2 (BAMO 2013 Problem 7). Let $F_{1}, F_{2}, F_{3} \ldots$ be the Fibonacci sequence, the sequence of positive integers with $F_{1}=F_{2}=1$ and $F_{n+2}=F_{n+1}+F_{n}$ for all $n \geq 1$. A Fibonacci number is by definition a number appearing in this sequence. Let $P_{1}, P_{2}, P_{3}, \ldots$ be the sequence consisting of all the integers that are products of two Fibonacci numbers (not necessarily distinct), in increasing order. The first few terms are

$$
1,2,3,4,5,6,8,9,10,13, \ldots
$$

since, for example $3=1 \cdot 3,4=2 \cdot 2$, and $10=2 \cdot 5$. Consider the sequence D_{n} of successive differences of the P_{n} sequence, where $D_{n}=P_{n+1}-P_{n}$ for $n \geq 1$. The first few terms of D_{n} are

$$
1,1,1,1,1,2,1,1,3, \ldots
$$

Prove that every number in D_{n} is a Fibonacci number.
Problem 2.3 (USAMO 2008 Problem 1). Prove that for each positive integer n, there are pairwise relatively prime integers $k_{0}, k_{1} \ldots, k_{n}$, all strictly greater than 1 , such that $k_{0} k_{1} \cdots k_{n}-1$ is the product of two consecutive integers.

Problem 2.4 (USAMO 2003 Problem 6). At the vertices of a regular hexagon are written six nonnegative integers whose sum is 2003. Bert is allowed to make moves of the following form: he may pick a vertex and replace the number written there by the absolute value of the difference between the numbers written at the two neighboring vertices. Prove that Bert can make a sequence of moves, after which the number 0 appears at all six vertices.
Problem 2.5 (USAMO 2011 Problem 6). Let A be a set with $|A|=225$, meaning that A has 225 elements. Suppose further that there are eleven subsets A_{1}, \ldots, A_{11} of A such that $\left|A_{i}\right|=45$ for $1 \leq i \leq 11$ and $\left|A_{i} \cap A_{j}\right|=9$ for $1 \leq i<j \leq 11$. Prove that $\left|A_{1} \cup A_{2} \cup \cdots \cup A_{11}\right| \geq 165$, and give an example for which equality holds.
Problem 2.6 (Putnam 2021 Problem A3). Determine all positive integers N for which the sphere

$$
x^{2}+y^{2}+z^{2}=N
$$

has an inscribed regular tetrahedron whose vertices have integer coordinates.
Problem 2.7 (Putnam 2003 Problem A1). Let n be a fixed positive integer. How many ways are there to write n as a sum of positive integers,

$$
n=a_{1}+a_{2}+\cdots+a_{k},
$$

with k an arbitrary positive integer and $a_{1} \leq a_{2} \leq \cdots \leq a_{k} \leq a_{1}+1$? For example, with $n=4$ there are four ways: $4,2+2,1+1+2,1+1+1+1$.
Problem 2.8 (Putnam 2003 Problem A5). A Dyck n-path is a lattice path of n upsteps $(1,1)$ and n downsteps $(1,-1)$ that starts at the origin O and never dips below the x-axis. A return is a maximal sequence of contiguous downsteps that terminates on the x-axis. For example, the Dyck 5 -path illustrated has two returns, of length 3 and 1 respectively.

Show that there is a one-to-one correspondence between the Dyck n-paths with no return of even length and the Dyck ($n-1$)-paths.

