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The 15 Puzzle

We will now begin to learn solving the 15 puzzle (when a solu-
tion exists).

The puzzle consists of a 4 ⇥ 4 frame randomly filled with 15
squares numbered one through fifteen. The objective is to slide
the squares in the proper order, left to right, starting with the
top row as on the picture below.

15 puzzle

You are encouraged to get the puzzle, either in the solid form
or as a smartphone/tablet app, and to start playing!

In the meanwhile, let’s dive into permutations!
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1 Permutations

Consider a set of marbles numbered 1 through n. Originally the
marbles are lined up in the order given by their numbers. The
following picture shows an example with n = 3.

1 2 3

Then the marbles are reshu✏ed in a di↵erent order.

3 1 2

A permutation is the operation of reshu✏ing the marbles (or
elements of any set). The one shown in the example is written
down as follows. ✓

1 2 3
2 3 1

◆

Instead of the numbered marbles, we can reshu✏e distinguish-
able elements of any set. For example, let us consider the fol-
lowing geometric figures rather than the marbles numbered 1,
2, and 3.
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Then the permutation
✓

1 2 3
2 3 1

◆

will reshu✏e the figures into the following order.

A more pictorial, geometric way is to think about a permutation
as of a system of highways connecting a number of entry points
to the equal number of exits. The highways do not intersect,
they go either above or below one another transporting the ob-
jects from the original positions at the top to the new positions
at the bottom.

✓
1 2 3
2 3 1

◆
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Problem 1.1 For the following figures, write down the permu-

tations that correspond to the following pictures.

✓
1 2 3

◆

✓
1 2 3

◆

✓
1 2 3

◆

Note that the last permutation does not reshu✏e anything at
all. Permutations of this kind typically denoted as e and called
trivial. A trivial permutation is still a permutation, and an im-
portant one!

Problem 1.2 Write down the trivial permutation for n = 5.

✓
1 2 3 4 5

◆

4

8111 1
8 2 3

I 3 2
8131 2

811 3
8 2 I

3 I 2

8111 1
8121 2

I 2 3
831 3

I 2 3 4 5



Problem 1.3 For the original order of figures given on page 4,

draw the figures in the orders prescribed by the permutations be-

low. Use the space to the right of a permutation to draw the

corresponding picture.

✓
1 2 3
3 2 1

◆

✓
1 2 3
2 1 3

◆

We have described above a combinatorial and a geometric way
to think of permutations. We will now introduce the third, func-
tional, approach.

A permutation is a bijection from an ordered set of n objects to
itself. In the case below, the input is the list at the top of the
diagram: the marble marked 1 in the first position, the marble
marked 2 in the second position, and the marble marked 3 in the
third one. The permutation transforms this list into the list at
the bottom: the marble marked 3 in the first position, the mar-
ble marked 1 in the second, and the marble marled 2 in the third.
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1 2 3

Permutation �

3 1 2

� =

✓
1 2 3
2 3 1

◆

The functional approach allows us to write �(1) = 2, �(2) = 3,
�(3) = 1. Note that the columns of the permutation provide
the table of values for the function.

� =

✓
1 2 3
2 3 1

◆

Problem 1.4 Find �(1), �(2), and �(3) for the permutations in

Problem 1.1.
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To generalize slightly, let us consider a permutation ↵ as a bijec-
tive function acting on a set of n elements. Then the following
is its table of values.

↵ =

✓
1 2 . . . n� 1 n

↵(1) ↵(2) . . . ↵(n� 1) ↵(n)

◆

We have shown you three di↵erent ways to describe permuta-
tions: combinatorial, geometrical, and functional. Choose the
one that speaks towards the deepest, darkest pit in your soul,
but bear in mind that they all essentially define the same thing.

2 Counting Permutations

Let n be a positive integer. The following product is denoted as
n! and is called n factorial.

n! = n⇥ (n� 1)⇥ . . .⇥ 2⇥ 1

Problem 2.1 Compute 5!.

Problem 2.2 How many permutations of four elements are there?

Problem 2.3 How many permutations of n + 1 elements are

there?
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Problem 2.4 Write down a permutation of four elements.

Problem 2.5 Write down a permutation of four elements that

keeps the third element in place.

Find the number of permutations of four elements that keep the

third element in place.
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1 2 34
eg 2 1 34
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3 Product of Permutations

It is possible to combine, or multiply, permutations. For exam-
ple, let us apply the permutation

� =

✓
1 2 3
2 1 3

◆

to the marbles already reshu✏ed by the permutation

� =

✓
1 2 3
2 3 1

◆
.

The permutation � switches the first and second elements, so

� � � =

✓
1 2 3
1 3 2

◆
.

Let us take another look at the above computation using the
figures from page 4. Originally, the set of the figures is ordered
as follows.

The permutation

� =

✓
1 2 3
2 3 1

◆

produces the picture:
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The permutation

� =

✓
1 2 3
2 1 3

◆

applied to the latter configuration gives us the following.

Comparing the last picture to the original gives us the answer.

� � � =

✓
1 2 3
1 3 2

◆

Note that in the product � � � of permutations, it is the one on
the right, �, that acts first on the set it permutes!

We can also see how the two functions compose by writing them
out like so:

1 7! 2 7! 1
2 7! 3 7! 3
3 7! 1 7! 2

Problem 3.1 Find the permutation � � �.

� � � =
Problem 3.2 Is the multiplication of permutations commuta-

tive?
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Problem 3.3 Find two non-trivial permutations of four ele-

ments that do commute.

� =

✓
1 2 3 4

◆
� =

✓
1 2 3 4

◆

Problem 3.4 Find the product � � � of the following two per-

mutations.

� =

✓
1 2 3 4
4 3 2 1

◆
� =

✓
1 2 3 4
3 4 1 2

◆

If you need to use a pictorial representation as a tool, take the

one on page 4 and add a diamond ⌃ as the fourth figure.
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1 2 34
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Problem 3.5 Find the product � � � of the permutations from

Problem 3.4. If needed, use a pictorial representation. Do the

permutations � and � commute?
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I 2 3 4
2 I 4 3

yes



4 Inverse Permutation

A permutation � is called opposite to a permutation � if
� � � = e. In other words, � undoes what � does. Such a
permutation is denoted as ��1 and is called the permutation

opposite to sigma or sigma inverse.

Example 4.1 Find ��1
for � =

✓
1 2 3
2 3 1

◆
.

The permutation � reshu✏es the figures

in the following order.

Hence, ��1 =

✓
1 2 3
3 1 2

◆
.

Note that since the permutation ��1 undoes what the permu-
tation � does, � works the same way for ��1. Hence, not only
��1 � � = e, but � � ��1 = e as well. Thus, � and ��1 always
commute.

��1 � � = � � ��1 = e
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Problem 4.1 Find ��1
for � =

✓
1 2 3
3 2 1

◆
.

Problem 4.2 Find ��1
for � =

✓
1 2 3 4
3 4 1 2

◆
.
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14 3 41
24 2 42
34 1 173

I 2 3
3 2 I

II it

1 2 34
3 4 I 2



Problems 4.1 and 4.2 exhibit two di↵erent non-trivial permuta-
tions � that are self-inverse, ��1 = �. Similarly, in regards to
numbers, there exists only two such values where x�1 = x, 1
and �1. Unlike numbers, however, there exist lots of di↵erent
non-trivial self-inverse permutations.

Problem 4.3 Find a non-trivial permutation � di↵erent from

the ones in Problems 4.1 and 4.2 such that ��1 = �.

Problem 4.4 Find the product � � � of the following two per-

mutations.

� =

✓
1 2 3 4
2 1 4 3

◆
� =

✓
1 2 3 4
1 3 2 4

◆

If you cannot do it right away, please use the following pictorial

representation for the original arrangement.

15

1 2 34
2 1 43

it

1 2 34
3 4 I 2



5 Why are we here?

So what’s up with this fandangled permutation business any-
ways? What’s its purpose and how is it related to the 15-puzzle?

Well, I don’t really know. I know it’s got something to do with
math though. But, an unnamed source says that we can solve
a popular problem regrading the 15 puzzle as the mathematical
foundation of the solution is the theory of permutations. The
theory not only helps to unravel the puzzle, but also comes quite
handy in a wide variety of applications.

The 15 puzzle was invented by Noyes Palmer Chapman, a post-
master in Canastota, New York, in the mid-1870s. Sam Loyd,
a man of interesting character 1 and prominent American chess
player,2 has o↵ered $1,000 (about $25,000 of modern day money)
for solving the puzzle in the form shown on the picture below.

1 2 3 4

5 6 7 8

9 10 11 12

13 15 14

1Loyd was simultaneously called ”America’s greatest puzzler,” ”hustler,” and ”fast
talking snake-oil salesman” by contemporary sources.

2Ranked 15th in the world.
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As it turns out, Loyd’s puzzle permutation is unsolvable, and
finding out why is the purpose of this mini-course.

Sam Loyd, 1841 – 1911

Problem 5.1 Write down the permutation corresponding to the

Loyd’s puzzle.

Problem 5.2 Let us call � the permutation from Problem 5.1.

Find ��1
.
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6 Improving our Notation

Note that the first line of the notation we have used for writing
down permutations so far is redundant. Indeed

� =

✓
1 2 3 4
2 1 4 3

◆

means that we shu✏e the second element to the first position,
the first element to the second position, the fourth element to the
third position, and the third element to the fourth one. Without
any loss of clarity, we can write this down as

� =
�
2 1 4 3

�
.

Problem 6.1 Apply the permutation � =
�
3 1 4 2

�
to the

sequence of geometric figures on page 15 and draw the result in

the space below.

Problem 6.2 Find the product � � � of the following two per-

mutations.

� =
�
3 1 4 2

�
� =

�
4 1 3 2

�
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7 Cycles

Let us set �0 = e for any permutation �. The permutation �2 is
defines as ���, �3 as ���2, and so on. Similarly, ��2 = ��1���1,
��3 = ��1 � ��2, and so forth.

Problem 7.1 Find the following powers of the permutation

� =
�
3 1 4 2

�
.

�2 =

�3 =

�4 =

��1 =

��2 =

��3 =

��4 =

19

4321

2413

1234

2413

4321

3142

1234



Solving Problem 7.1, you may have noticed the following. The
formula �4 = e means that

• � � �3 = e, hence ��1 = �3 and ��3 = �;

• �2 � �2 = e, hence ��2 = �2. Furthermore,

• �5 = �4 � � = e � � = �;

• �6 = �4 � �2 = e � �2 = �2;

• �7 = �4 � �3 = e � �3 = �3;

• �8 = �4 � �4 = e � e = e;

• �9 = �8 � � = e � � = �;

• ��5 = ��4 � ��1 = e�1 � �3 = e � �3 = �3; and so forth.

It turns out that all the powers of the permutation � reside
naturally on the following circle.

��3

e

�2
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To understand the circle, consider the integers on a circle divided
into four equal parts.

13

0

2

On the circle, 0 coincides with 4. We write this fact down as

4 ⌘ 0 (mod 4)

and read it as 4 is congruent to 0 modulo 4. The usual “=” sign
is reserved for the straight number line; we use “⌘” on the circle
instead. The mod 4 symbol tells us that the circle is divided into
4 equal parts, so 4 coincides with 0, 5 with 1, 6 with 2, and so
on. Or in the new notations, 4 ⌘ 0 (mod 4), 5 ⌘ 1 (mod 4),
6 ⌘ 2 (mod 4), 7 ⌘ 3 (mod 4), and so forth.

Problem 7.2

�21 ⌘ (mod 4)

6 + 5 ⌘ (mod 4)

As we can see, powers of the permutation � from Problems 6.2
and 7.1 produce nothing more than a multiplicative realization

21

3
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of the mod 4 arithmetic. In other words, the mod 4 integers on
the second circle serve as powers of the permutation � on the
first circle.

Example 7.1 Find the 125 power of the permutation �
from Problems 6.2 and 7.1.

�125 = �1 (mod 4) = �

Problem 7.3 Find the -333 power of the permutation �
from Problems 6.2 and 7.1.

The smallest positive power n of a permutation � such that
�n = e is called the order of the permutation.

Problem 7.4 What is the order of the permutation � we have

considered in Problems 6.2, 7.1, and 7.3?
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3 1 42

o 333 03mod4
03 12413
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Problem 7.5 Find the following powers of the permutation µ =�
3 2 4 1

�
.

µ2 =

µ3 =

µ4 =

µ�1 =

µ�2 =

µ�3 =

What is the order of the permutation µ?

The problem continues on the next page.

23

4213

I 234

3 2 41

4 2 13

3241

I 2341
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Mark µ123
, µ124

, and µ125
on the circle below.

What mod n arithmetic is realized by the powers of µ?

8 Improving our Notation, Again... :)

Let us take another look at the permutation µ from Problem
7.5.

µ =
�
3 2 4 1

�

The permutation does not shu✏e the second element. Hence,
writing it is redundant. Knowing that the original set consists
of four elements, we can write the permutation down as

µ =
�
3 4 1

�

Since the second element does not appear in the formula, we
know that the permutation does not move it. This convention
becomes very convenient with larger permutations. For exam-
ple, let us take another look at Sam Loyd’s formulation of the

24
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O

µ125
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15 puzzle. Since we need to keep track of the empty square, as
well as of the numbered ones, let us consider it as the 16th tile.

1 2 3 4

5 6 7 8

9 10 11 12

13 15 14

The permutation
�
1 2 3 4 5 6 7 8 9 10 11 12 13 15 14 16

�

switches the 14th and 15th elements only. Writing down the
14 elements it does not move is a waste of time! In the new
notations,
�
1 2 3 4 5 6 7 8 9 10 11 12 13 15 14 16

�
=

�
15 14

�
.

Since all other elements are not mentioned, we know that the
permutation does not shu✏e them.

Here is one more example. Let µ =
�
3 4 1

�
be a permutation

of six elements. Since the elements 2, 5, and 6 are not listed, µ
keeps them in place. So in fact, µ =

�
3 2 4 1 5 6

�
.
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Problem 8.1 The permutation ⌫ =
�
3 1

�
acts on a set of

three elements. Write down its full version.

⌫ =
What is the order of ⌫?

Write down the short form of ⌫�10,000,831
.

⌫�10,000,831 =
Problem 8.2 The permutation � =

�
3 5 7 1

�
acts on a set

of seven elements. Write down its full version.

� =
What is the order of �?

Write down the short form of ��10,000,000
.

��10,000,000 =
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3254761
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9 Transposition

A permutation that swaps two elements and doesn’t shu✏e any-
thing else is called a transposition. For example, the permuta-
tion that switches the order of the third and fifth element in a
six-element set is

�
5 3

�
=

�
1 2 5 4 3 6

�
.

Problem 9.1 What is the inverse of the transposition
�
5 3

�
?

�
5 3

��1
=

Problem 9.2 What is the order of any transposition?

Any permutation can be realized as a product of transpositions.
For example, let us consider the permutation � =

�
3 1 4 2

�

from Problems 6.2, 7.1, and 7.3. Applying the transposition�
2 1

�
to the original order of the elements gives us the follow-

ing. �
1 2 3 4

�
�!

�
2 1 3 4

�

Let us apply the transposition
�
4 1

�
to the result.

�
2 1 3 4

�
�!

�
4 1 3 2

�

Finally, applying the transposition
�
3 1

�
finishes the job.

�
4 1 3 2

�
�!

�
3 1 4 2

�

Or more concisely,
�
3 1 4 2

�
=

�
3 1

� �
4 1

� �
2 1

�
.
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Problem 9.3 Realize the permutation
�
2 3 1

�
as a product

of transpositions.

Problem 9.4 Write down the permutation µ that corresponds

to the following move of the 15 puzzle. Remember, we treat the

empty square as the 16th tile!

1 2 3 4

5 6 7 8

9 10 11 12

13 15 14

1 2 3 4

5 6 7 8

9 10 11

1213 15 14

µ =

Find the product µ �
�
15 14

�
and compare the answer to the

order of the squares on the second picture of the previous page.

µ �
�
15 14

�
=

28
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1612

16 1514 12



Problem 9.5 Write down the permutation that corresponds to

the following move of the 15 puzzle. Remember, we treat the

empty square as the 16th tile!

1 2 3 4

5 6 7 8

9 10 11

1213 15 14

1 2 3 4

5 6 7 8

9 10 11

1213 15 14

29
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If you are finished doing all the above, but there still

remains some time...

Recall that cryptarithms, also known as alphametics, are math
games of figuring out unknown numbers represented by words.
Di↵erent letters correspond to di↵erent digits. The first digit of
a number cannot be zero.

Problem 9.6 Solve the following cryptarithm.

N U M B E R

+ N U M B E R

P U Z Z L E

30

201689
201 689
403378


