$$
6
$$

Problem 1-Algebra-1 point
AMC 82017 Q3
What is the value of the expression $\sqrt{16 \sqrt{8 \sqrt{4}}}$?

Problem 2-Algebra-2 points
AMC 82018 Q10
The harmonic mean of a set of non-zero numbers is the reciprocal of the average of the reciprocals of the numbers. What is the harmonic mean of 1,2 , and 4 ? (Remember that the reciprocal of a number n is $1 / n$.)

Problem 3-Algebra-3 points

AMC 82017 Q14
Chloe and Zoe are both students in Ms. Demeanor's math class. Last night they each solved half of the problems in their homework assignment alone and then solved the other half together. Chloe had correct answers to only 80\% of the problems she solved alone, but overall 88% of her answers were correct. Zoe had correct answers to 90% of the problems she solved alone. What was Zoe's overall percentage of correct answers?

Problem 4-Algebra-4 points
AMC 82019 Q16
Qiang drives 15 miles at an average speed of 30 miles per hour. How many additional miles will he have to drive at 55 miles per hour to average 50 miles per hour for the entire trip?

Problem 5-Algebra-5 points

AMC 82017 Q17
Starting with some gold coins and some empty treasure chests, I tried to put 9 gold coins in each treasure chest, but that left 2 treasure chests empty. So instead I put 6 gold coins in each treasure chest, but then I had 3 gold coins left over. How many gold coins did I have?

Problem 6-Algebra - 6 points

AMC 82005 Q22
A company sells detergent in three different sized boxes: small (S), medium (M) and large (L). The medium size costs 50% more than the small size and contains 20% less detergent than the large size. The large size contains twice as much detergent as the small size and costs 30% more than the medium size. Rank the three sizes from best to worst buy.

$$
6
$$

Problem 7-Arithmetic-1 point
AMC 82004 Q9
The average of the five numbers in a list is 54. The average of the first two numbers is 48 . What is the average of the last three numbers?

Problem 8-Arithmetic-2 points
AMC 82019 Q20
How many different real numbers x satisfy the equation $\left(x^{2}-5\right)^{2}=16 ?$

Problem 10-Arithmetic-4 points
AMC 82007 Q18
The product of the two 99-digit numbers
$303,030,303, \ldots, 030,303$ and $505,050,505, \ldots, 050,505$ has thousands $\operatorname{digit} A$ and units digit B. What is the sum of A and B ? For example, the number $123,456,789$ has thousands digit 6 and units digit 9 .

Problem 11-Arithmetic - 5 points
AMC 10A 2005 Q15
How many positive cubes divide 3 ! • 5! • 7 !?

Problem 12-Arithmetic - 6 points
Yan Tao (ytao@math.ucla.edu)
Using the clues, find the 4-digit number that belongs in each row. Cells inside a region (denoted by bolded lines) must all contain the same digit, and each region contains a different digit. (Rows may not begin with 0 .)

Row 1's digits backwards form a multiple of 64.
Row 2's digits from a decreasing arithmetic progression.
Row 3 is the product of exactly three prime numbers.
Row 4 equals $(n-2)(n+2)$ for some integer n.

$$
6
$$

Problem 13-Geometry-1 point
AMC 82019 Q2
Three identical rectangles are put together to form rectangle $A B C D$. Given that the length of the shorter side of each rectangle is 5 feet, what is the area of rectangle $A B C D$ in square feet?

Problem 15-Geometry-3 points

AMC 82020 Q18
Rectangle $A B C D$ is inscribed in a semicircle with diameter $F E$ as shown in the figure. Suppose $D A=16$ and $F D=A E=9$. What is the area of $A B C D$?

Problem 17-Geometry-5 points

AMC 10B 2012 Q21
Four distinct points are arranged in the plane so that the segments connecting them have lengths $a, a, a, a, 2 a$, and b. What is the ratio of b to a ?

Problem 14-Geometry-2 points
AMC 82009 Q9
Construct a square on one side of an equilateral triangle. On one non-adjacent side of the square, construct a regular pentagon, as shown. On a non-adjacent side of the pentagon, construct a hexagon. Continue to construct regular polygons in the same way, until you construct an octagon. How many sides does the resulting polygon have?

Problem 16-Geometry - 4 points

David Altizio (altizio2@illinois.edu)

Triangle $A E F$ is a right triangle with $A E=4$ and $E F=3$. The triangle is inscribed inside square $A B C D$ as shown. What is the area of the square?

Problem 18-Geometry-6 points
AMC 82019 Q24
In triangle $A B C$, point D divides side $A C$ so that $A D: D C=1: 2$. Let E be the midpoint of $B D$ and let F be the point of intersection of line $B C$ and line $A E$. Given that the area of triangle $A B C$ is 360 , what is the area of triangle $E B F$?

$$
6
$$

Problem 19-Combinatorics and Probability-1 point AMC 82004 Q2

How many different four-digit numbers can be formed by rearranging the four digits in 2004?

Problem 20-Combinatorics and Probability- 2 points AJHSME 1987 Q25

Ten balls numbered 1 to 10 are in a jar. Jack reaches into the jar and randomly removes one of the balls. Then Jill reaches into the jar and randomly removes a different ball. What is the probability that the sum of the two numbers on the balls removed is even?

Problem 21 - Combinatorics and Probability - 3 points
AMC 82019 Q18
The faces of each of two fair dice are numbered $1,2,3,5,7$, and 8 . When the two dice are tossed, what is the probability that their sum will be an even number?

Problem 22-Combinatorics and Probability - 4 points AMC 10B 2009 Q11 (Modified)

How many 7-digit palindromes (numbers that read the same forwards and backwards) that do not have more than 2 occurrences of any digit are there?

Problem 23 - Combinatorics and Probability - 5 points

AMC 82019 Q25
Alice has 24 apples. In how many ways can she share them with Becky and Chris so that each of the people has at least 2 apples?

Problem 24-Combinatorics and Probability - 6 points AMC 82018 Q23

From a regular octagon, a triangle is formed by connecting three randomly chosen vertices of the octagon. What is the probability that at least one of the sides of the triangle is also a side of the octagon?

$$
6
$$

Problem 25-Boolean Algebra-1 point
Create a truth table for the following Boolean algebra expression.
$R \neg S+R S+\neg R S$

Problem 26-Boolean Algebra-2 points
Fully simplify the following Boolean algebra expression.
$\neg X+X(X+\neg Y)(Y+\neg Z)$
Then, write out the truth table for the simplified expression.

Problem 27-Boolean Algebra-3 points

Write down the expression in full disjunctive normal form that corresponds to the marked vertices of the cube, and use the cube to simplify.

In addition to the operators AND, OR, and NOT, there is an operator NAND that is represented by the symbol \uparrow. The expression $A \uparrow B$ means $\neg(A B)$.

Rewrite the following expression using only \uparrow operators. $A \neg B+C D$

Problem 28-Boolean Algebra-4 points
By means of algebraic manipulation, prove the consensus theorem. That is, show:
$T U+\neg T V+U V=T U+\neg T V$

Problem 30-Boolean Algebra-6 points
Geometrically represent a 7 -variable Boolean expression in full disjunctive normal form. Answer can be verbally explained to the instructors.

