Nonstandard analysis

Nikita and Stepan

Summer 2023

The conduit is available at https://tinyurl.com/ORMCconduit

Transfer Principle

Problem 1 (★). Is there a solution for the following system of equations and inequations:

\[
\begin{align*}
x^2 + y^2 &= 0 \\
x + y &\neq 0
\end{align*}
\]

In the previous handout, we considered a nonarchimedean extension \(F \) of field \(\mathbb{R} \). It was enough to require that \(F \) has four arithmetic operations and infinitesimals to use it to take derivatives. But even if we try to differentiate \(f(x) = \sqrt{x} \), we need to make sure that in \(F \) we can take square roots. If we want to take derivatives of functions like \(\sin(x) \), we require that in \(F \) we can take sines as well. It is not true for any extension \(F \). So here we will use a very specific extension \({}^*\mathbb{R} \). We call elements of \({}^*\mathbb{R} \) the hyperreals.

Definition 1. Any function \(f(x_1, \ldots, x_n) \) of \(n \) real variables has a nonstandard extension \({}^*f(x_1, \ldots, x_n) \), which takes hyperreal inputs \(x_1, \ldots, x_n \) and outputs a hyperreal, such that it coincides with \(f \) on all real inputs.

Definition 2 (Transfer Principle). Any system of equations and inequations using functions has a solution in \(\mathbb{R} \) if and only if the \({}^*\)-analog of this system has a solution in \({}^*\mathbb{R} \).

Let us use the transfer principle to get some consequences:

Example 1. If \(f : \mathbb{R} \rightarrow \mathbb{R} \) only takes values 0 and 1, then \({}^*f \) also only takes values 0 and 1.

Proof. Consider the system

\[
\begin{align*}
f(x) &\neq 0, \\
f(x) &\neq 1.
\end{align*}
\]

Since it has no solutions in reals, its \({}^*\)-analog

\[
\begin{align*}
{}^*f(x) &\neq 0, \\
{}^*f(x) &\neq 1.
\end{align*}
\]

has no solutions in hyperreals. So \({}^*f \) also only takes values 0 and 1.
Remark 1. We remind you that the possibility of the existence of such a nice field \(^*\mathbb{R}\) is a hypothesis for now. We will work with the consequences of its existence for the whole course and will prove it if time permits.

Theorem 1 (Abraham Robinson). Such field \(^*\mathbb{R}\) exists.

Example 2. If \(f\) and \(g\) are functions such that sets of their zeroes coincide, then for \(^*f\) and \(^*g\) their sets of zeroes coincide.

Proof. Indeed, the systems

\[
\begin{align*}
 f(x) &= 0 \text{ and } g(x) \neq 0 \\
 f(x) &\neq 0 \text{ and } g(x) = 0
\end{align*}
\]

have no solutions, so the systems

\[
\begin{align*}
 ^*f(x) &= 0 \text{ and } ^*g(x) \neq 0 \\
 ^*f(x) &\neq 0 \text{ and } ^*g(x) = 0
\end{align*}
\]

also have no solutions.

Problem 2. Prove that \(^*\sin(x)\) is never equal to 42.

Definition 3. Examples 1 and 2 allow us to define an enlargement \(^*A\) for any set \(A \subseteq \mathbb{R}\). Indeed, consider any function \(f\) which has \(A\) as the set of its zeroes (such a function exists, e.g.

\[
 f(x) = \begin{cases}
 0, & \text{if } x \in A \\
 1, & \text{otherwise.}
 \end{cases}
\]

suits). Then \(^*A\) is a set of zeroes of \(^*f\). Note that by Example 2 this definition is independent of \(f\).

Problem 3. Show that \(^*\emptyset = \emptyset\).

Problem 4 (♀). Prove that if \(A = B \cap C\), then \(^*A = ^*B \cap ^*C\).

Problem 5 (♂). Prove that any number \(n \in ^*\mathbb{N}\) also belongs to \(^*\mathbb{Q}\).

Example 3. Any set \(A\) is a subset of \(^*A\). So the term “enlargement” is justified.

Proof. Let \(a\) be an element of \(A\) and \(f\) be some function with \(A\) as a set of zeroes. Then \(^*f(a) = 0\) since \(^*f\) coincides with \(f\) on real inputs. So \(a\) belongs to \(^*A\).

Problem 6 (♀).
 a) Show that if \(A = \{0, 1\}\), then \(^*A = A\).

 b) Show that if \(A\) is finite, then \(^*A = A\).

The transfer principle also works with functions of 2 and more arguments. Note that the transfer principle is enough to see that \(^*\mathbb{R}\) is an ordered field. For example, let’s check the fifth axiom of an ordered field.

Example 4. For any \(x, y, z \in ^*\mathbb{R}\) one has \((x + y)z = xz + yz\).
Indeed, addition and multiplication are just functions taking two arguments. We can write them as \(a(x, y) = x + y \) and \(m(x, y) = xy \) to remember it. Then the inequality
\[
m(a(x, y), z) \neq a(m(x, z), m(x, z))
\]
has no solutions in reals, so hyperaddition \(\ast a \) and hypermultiplication \(\ast m \) also never fail the fifth axiom.

Problem 7.

a) Show that (hyper)products of hyperrational numbers are also hyperrational.

b) (*) Can a sum of two hyperirrational numbers be hyperrational?

Problem 8. (It will be used in problem 12) Show that
\[
\ast \sqrt(x) \ast - \ast \sqrt(y) = (x \ast - y) \ast (\ast \sqrt(x) \ast + \ast \sqrt(y)),
\]
where \(\sqrt(x) = \sqrt{x} \).

Remark 2. In the sequel, we will omit stars while using functions, so we just write \(f \) instead of \(\ast f \) and \(+, -, \sqrt, \sin, \ln, |x| \) instead of \(\ast +, \ast -, \ast \sqrt, \ast \sin, \ast \ln, \ast |x| \) and so on.

Problem 9 (♀).

\[
\text{less}(x, y) = \begin{cases}
1, & \text{if } x < y, \\
0, & \text{otherwise}.
\end{cases}
\]

Check that the axiom 11 holds for \(\ast R \): for any \(x, y, z \in \ast R \) such that \(\text{less}(x, y) = 1 \) and \(\text{less}(y, z) = 1 \), we also have \(\text{less}(x, z) = 1 \).

Definition 4. A binary relation on set \(X \) is a function from \(X \times X \) to \{True, False\}. Examples of relations on \(\mathbb{R} \) are \(=, \neq \) and \(< \). On \(\mathbb{N} \) there is a relation “divides”, which is usually denoted by \(| \) (so \(7 | 98 \)).

For any binary relation \(R(x, y) \) on \(\ast \mathbb{R} \), one may define a binary relation \(\ast R \) on \(\ast \mathbb{R} \) using the same trick as the previous problem does with \(< \).

In the sequel, we will write \(R \) instead of \(\ast R \), as we strictly speaking should.

Problem 10 (♀).

a) Show that if \(y > x + 1 \) for \(x, y \in \ast \mathbb{R} \), then there exists an integer \(n \) s.t. \(x < n < y \).

b) Show that between any two different hyperreals there is a hyperrational.

c) Show that any hyperreal is infinitely close to some hyperrational.

Remark 3. In particular, since \(\ast \mathbb{R} \) is nonarchimedean, there exists some positive unlimited hyperreal, so there is an unlimited hypernatural.

Recall that \(x \in \ast \mathbb{R} \) is called unlimited if \(|x| \) is greater than any standard number and infinitesimal if \(|x| \) is smaller than every standard positive real.

Problem 11. Let \(\text{abs}(x) = |x| \) be the absolute value function. Prove that \(\ast \text{abs}(x) \) coincides with \(|x| \) as defined for any nonarchimedean extension in the previous worksheet.
Problem 12. a) Show that for any positive unlimited H the square root of H is also unlimited.

b) Show that for any positive unlimited H the number $\sqrt{H} + 1 - \sqrt{H}$ is infinitesimal.

Problem 13 (🔗). a) Find a function f, which is not identically zero, such that $f(x) = 0$ for all unlimited x;

b) (*) Find an increasing function f, which is not a constant, such that $f(2H) - f(H)$ is infinitesimal for all positive unlimited H;

Problem 14 (*). Develop a theory of prime factors in $^*\mathbb{N}$: if P is the set of standard prime numbers, with enlargement $^*P \subset ^*\mathbb{N}$, prove the following:

a) Show that for any $M \in ^*\mathbb{N}$ there is an $N \in ^*\mathbb{N}$ that is divisible in $^*\mathbb{N}$ by all members of $\{1, 2, \ldots, M\}$. Hence show that there exists a hypernatural number N that is divisible by every standard positive integer.

b) *P consists precisely of those hypernaturals > 1 that have no nontrivial factors in $^*\mathbb{N}$.

c) Every hypernatural number > 1 has a "hyperprime" factor, i.e., is divisible by some member of *P.

d) Show that there exists an unlimited hyperprime (Hint: see Remark 3)

Recall that a real number x_0 is said to be the standard part of x, denoted $st(x)$, if it is infinitely close to x. A hyperreal is called standard, if it is a real, and nonstandard, if it is not.

Problem 15 (🔗). a) Show that for any infinite set A there is a nonstandard element of *A;

b) Show that for any unbounded set A there is an unlimited element of *A.

Problem 16. a) Show that for any bounded set A there is an element $x \in ^*A$, which is greater or equal than any standard $y \in A$.

b) Show that for any such x one has $st(x) = sup A$.

Problem 17 (🔗). Let A and B be subsets of \mathbb{R}, and let $sup A$ and $sup B$ be known.

1. Find $sup(A \cup B)$.

2. Find $sup(A + B)$, where $A + B = \{a + b \mid a \in A, b \in B\}$.

3. Find $inf(A \cdot B)$, where $A \cdot B = \{a \cdot b \mid a \in A, b \in B\}$, if A and B consist of negative numbers.

Remark 4. Note that the proof involves no ε-guessing, an annoying technique prevalent in the standard approach to analysis, which we discussed in the second meeting.