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1. Let ABCD be a convex quadrilateral with ∠DAB = ∠BCD = 90◦ and ∠ABC > ∠CDA. Let Q and
R be points on segments BC and CD, respectively, such that line QR intersects lines AB and AD
at points P and S, respectively. It is given that PQ = RS. Let the midpoint of BD be M and the
midpoint of QR be N . Prove that the points M,N,A and C lie on a circle.

Proof. Quadrilateral ABCD is cyclic with diameter BD and center M, so ∠AMC = 2∠ADC. Also N
is the midpoint of QR and PS. Using right triangles PAS and QCR, we have

∠ANC = ∠ANP + ∠QNC = 2∠ASP + 2∠QRC = 2(∠ASP + ∠DRS) = 2∠ADC = ∠AMC.

This concludes the proof.

2. Find the smallest positive integer k for which there exists a colouring of the positive integers Z>0 with
k colours and a function f : Z>0 → Z>0 with the following two properties:

(a) For all positive integers m,n of the same colour, f(m+ n) = f(m) + f(n).

(b) There are positive integers m,n such that f(m+ n) ̸= f(m) + f(n).

In a colouring of Z>0 with k colours, every integer is coloured in exactly one of the k colours. In both
(a) and (b) the positive integers m,n are not necessarily distinct.

Proof. The answer is k = 3. For k = 3, color each n ∈ Z>0 with the n (mod 3) color and define

f(n) =

{
n 3 | n
2n 3 ∤ n.

It is straightforward to verify that this coloring and this f does the job.

We then prove that there is no coloring and f for k = 2. Suppose to the contrary. Observe first that
f(2n) = 2f(n) for any n.

Let a be the smallest positive integer such that f(a) ̸= af(1). Note that a exists by condition (b).
Also a > 2. Then a is odd, since otherwise a/2 is an integer less than a, so f(a/2) = af(1)/2. Then
f(a) = 2f(a/2) = af(1), a contradiction.

Let b < a be odd. If a and b have the same color, then f(a + b) = f(a) + bf(1). On the other hand
a+ b is even, and (a+ b)/2 is an integer less than a, so f(a+ b) = 2f((a+ b)/2) = (a+ b)f(1). Then
f(a) = af(1), a contradiction. Thus any odd integer b < a has a different color than a.

Let b < a be even. If a and b have different colors, then a − b is odd and thus have different colors
than a, so a− b has the same color as b. Then f(a) = f(a− b) + f(b) = af(1), a contradiction. Thus
any even integer b < a has the same color as a.

In particular, a− 1 and a have the same color, and a− 2 and a have different colors. Also since a+ 1
is even, we have (a+ 1)/2 is an integer less than a, so f(a+ 1) = 2f((a+ 1)/2) = (a+ 1)f(1).

Now suppose a+ 1 has the same color as a. Then

2f(a) = f(2a) = f(a+ 1) + f(a− 1) = (a+ 1)f(1) + (a− 1)f(1) = 2af(a),
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which is a contradiction. Thus a+ 1 and a have different colors.

Since a− 2 is an odd integer less than a, so a− 2 and a have different colors, and then a− 2 and a+1
have the same color. Then

f(a) + (a− 1)f(1) = f(a) + f(a− 1) = f(2a− 1) = f(a− 2) + f(a+ 1) = (a+ 1)f(1) + (a− 2)f(1).

This implies f(a) = af(1), a contradiction. Thus no such coloring and f exists for k = 2.

3. There are 2017 lines in the plane such that no three of them go through the same point. Turbo the
snail sits on a point on exactly one of the lines and starts sliding along the lines in the following fashion:
she moves on a given line until she reaches an intersection of two lines. At the intersection, she follows
her journey on the other line turning left or right, alternating her choice at each intersection point she
reaches. She can only change direction at an intersection point. Can there exist a line segment through
which she passes in both directions during her journey?

Proof. We first claim that we can color the regions bounded by the lines black and white, so that any
two regions sharing a common side have different colors. Indeed, if there are no lines then the claim
is trivial. Now suppose we have a coloring for n − 1 lines. After adding the n-th line, we can keep
the coloring on one side of the n-th line, and reverse the coloring on the other side of the n-th line.
It is straightforward to verify that this coloring satisfies the conditions. Thus the claim follows by
induction.

Now suppose Turbo starts on a segment such that her left is a white region and her right is a black
region (otherwise just reverse all colorings). Then each time no matter which direction she turns to,
she still has on her left a white region and on her right a black region. Thus it is impossible for her
to pass a line segment in both directions, since that means that she would have a white region on her
right and a black region on her left.

4. Let n ≥ 1 be an integer and let t1 < t2 < · · · < tn be positive integers. In a group of tn + 1 people,
some games of chess are played. Two people can play each other at most once. Prove that it is possible
for the following two conditions to hold at the same time:

(i) The number of games played by each person is one of t1, t2, . . . , tn.

(ii) For every i with 1 ≤ i ≤ n, there is someone who has played exactly ti games of chess.

Proof. We proceed by induction. The case n = 1 is clear since the complete graph on t1 + 1 vertices
works. Now suppose the claim holds for n− 1. We first construct a graph G1 with tn − t1 + 1 vertices
and satisfies the conditions for tn − tn−1 < tn − tn−2 < · · · < tn − t1. Then add in t1 more isolated
vertices, and take the complement graph. It is straightforward to verify that the final graph does the
job.

5. Let n ≥ 2 be an integer. An n-tuple (a1, a2, . . . , an) of not necessarily different positive integers is
expensive if there exists a positive integer k such that

(a1 + a2)(a2 + a3) . . . (an−1 + an)(an + a1) = 22k−1.

a) Find all integers n ≥ 2 for which there exists an expensive n-tuple.

b) Prove that for every odd positive integer m there exists an integer n ≥ 2 such that m belongs to an
expensive n-tuple.

There are exactly n factors in the product on the left hand side.

(a) Proof. Tuple (1, 1, · · · , 1) does the job when n is odd. We then prove that there is no expensive
tuple for even n. Proceed by induction.
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When n = 2 the claim is clear since (a1 + a2)(a2 + a1) is a perfect square but 22k−1 is not.
Now suppose to the contrary that there is an n-tuple (a1, · · · , an). for some n ≥ 4. Let at =
max1≤i≤n ai. Then

at−1 + at ≤ 2at < 2(at+1 + at)

and
at+1 + at ≤ 2at < 2(at−1 + at)

where indices are considered modulo n. Note that at+1 + at and at−1 + at are powers of 2, so
they are necessarily equal and then at−1 = at+1. Then we can remove at+1 + at and at−1 + at
from the product, and we are left with an expensive (n−2)-tuple, which contradicts our inductive
hypothesis. Thus no expensive even tuples exist.

(b) Proof. We prove by induction. We saw the case m = 1 in (a). Now suppose the claim holds for
all m′ < m. Write 2k < m < 2k+1 for some integer k, and set m′ = 2k+1 − m < m. Then we
know that m′ is in an expensive n-tuple (a1, · · · , an) for some n. Assume a1 = m′ after cyclicly
permuting the indices. Then we see that (m′,m,m′, a2, · · · , an) is an expensive (n + 2)-tuple.
This completes the proof.

6. Let S be the set of all positive integers n such that n4 has a divisor in the range n2+1, n2+2, . . . , n2+2n.
Prove that there are infinitely many elements of S of each of the forms 7m, 7m+1, 7m+2, 7m+5, 7m+6
and no elements of S of the form 7m+ 3 or 7m+ 4, where m is an integer.

Proof. The condition n ∈ S is equivalent to n2 + k | n4 for some 1 ≤ k ≤ 2n, which means

n2 + k | n4 − (n2 + k)(n2 − k) = k2.

Let k2 = c(n2 + k). Since 1 ≤ k ≤ 2n, we have

4n2 ≥ k2 = c(n2 + k) ≥ c(n2 + 1).

This means c is 1 or 2 or 3.

When c = 1, we have k2 = n2 + k, so (2n)2 + 1 = (2k + 1)2. This is impossible for n > 0.

When c = 2, we have k2 = 2n2 +2k, so (k− 1)2 − 2n2 = 1. This is a Pell’s equation x2 − 2y2 = 1. The
fundamental solution is (x1, y1) = (3, 2), and we have the recurrence relation

xn+1 = 3xn + 4yn

yn+1 = 2xn + 3yn.

Using (x1, y1) = (3, 2), we can conclude all possibilities of (x, y) (mod 7) are (3, 2), (3,−2) and (1, 0).
Note that y = n. Thus n is of the forms 7m, 7m + 2 and 7m + 5 when c = 2, and there are infinitely
many of each.

When c = 3, we have k2 = 3n2 + 3k. Thus 3 | k, and then 9 | k2 − 3k, so 3 | n. Write k = 3k0 and
n = 3n0. Then we have k20 = 3n2

0+k0, or (2k0−1)2−3(2n0)
2 = 1. This is a Pell’s equation x2−3y2 = 1.

The fundamental solution is (x1, y1) = (2, 1), and we have the recurrence relation

xn+1 = 2xn + 3yn

yn+1 = xn + 2yn.

Since x is odd and y is even, only (x2n, y2n) works. Using (x1, y1) = (2, 1), we can conclude all
possibilities of (x2n, y2n) (mod 7) are (0, 4), (−1, 0), (0, 3), and (1, 0). Note that y = 2n0 and n = 3n0.
Thus n is of the forms 7m+ 6, 7m and 7m+ 1 when c = 3, and there are infinitely many of each.
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