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What RSAying?

Last class, we examined Caesar ciphers and more general mono-alphabetic
ciphers. Caesar ciphers proved to be relatively insecure: a simple itera-
tion through the possible shifts was enough to crack them. General mono-
alphabetic ciphers proved to be a lot more resilient: we had to use frequency
analysis and some knowledge about English letters to crack them. Today, we’ll
create a particular kind of mono-alphabetic cipher using some neat properties
of modular arithmetic!

Abstract Algebra Refresher

Problem 1. What is the multiplicative inverse of a number?

Problem 2. Find the multiplicative inverses of:

(i) 2

(ii) 100

(iii) 1/7

Problem 3. What happens when you multiply a number by its multiplicative
inverse? Does every number have a unique multiplicative inverse?
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Hopefully your answers were accompanied by a big ’IF’. Recall that abstract
ideas of addition and multiplication can apply to systems beyond just the real
numbers! Some axioms hold for certain number systems, while others do not.
For example, we previously defined modular arithmetic as:

Definition 1. For any integer x, we let (x mod n) equal the unique integer
in 0, 1, 2, . . . , n − 1 that is congruent to x modulo n. In other words, if you
divide x by n, then we define (x mod n) to be the positive integer remainder
(if the remainder is negative, simply add n to it).

It holds true for any two integers x, y that

(x+ y mod n) =
(
(x mod n) + (y mod n) mod n

)
and that

(x · y mod n) =
(
(x mod n) · (y mod n) mod n

)
.

Problem 4. Fill out the following table for multiplication in Z10. For each
cell, you compute the row label times the column label.

·10 0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9
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Problem 5. Using the table, find the multiplicative inverses of the following
numbers in Z10, or explain why no inverse exists.

(i) 1

(i) 3

(i) 5

(i) 9

Problem 6. Does every number in Z10 have a multiplicative inverse? If so,
write down the inverse of every number. If not, describe a pattern for numbers
that have inverses.

In a Caesar cipher, the alphabet is shifted a certain number of places to
encode a message. Numbers that get shifted past Z wrap around to A.

Problem 7. Explain how you might use modular arithmetic to describe a
Caesar cipher. (Hint: If we’re encrypting the pth letter of the alphabet with a
shift of k, where along the alphabet will the shifted letter end up?)
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Improving the Caesar Cipher

Last class, we showed that encrypting messages with Caesar ciphers isn’t
particularly safe. Let’s see if we can improve on the work of the Romans.
Instead of shifting/adding k to each letter of the alphabet, what happens if
we multiply by a number p?

Problem 8. Let’s first examine how a multiplicative scheme would apply to
digits. Fill in the chart below by multiplying each digit by 7 (mod 10).

Problem 9. For the sake of encryption, do you think that 7 is a good choice
for p? Why or why not?
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Problem 10. Let’s see what happens when we encrypt digits with a different
choice of p. Fill in the chart below by multiplying each digit by 5 (mod 10).

Problem 11. Do you think that 5 is a good choice for p? Why or why not?

Problem 12. Do you notice a pattern for which numbers make good choices
for p? How does this relate to our review of multiplicative inverses?

5



As you can see, not all numbers make good choices for p. Let’s call the num-
bers that encode unencrypted numbers as unique encrypted numbers multi-
plicative encoders.

Problem 13. Is p = 1 a multiplicative encoder? If so, would you use it to
encrypt a message? Why or why not?

Problem 14. List all the multiplicative encoders in Z10. For each encoder p,
find gcd(p, 10), i.e., the greatest common divisor of p and 10.

Problem 15. Let’s extend the range of our encryption scheme to the alpha-
bet, in Z26. List all the multiplicative encoders that we could use to encrypt
messages containing just alphabetical letters.
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Definition 2. Two numbers p and m are called co-prime if the greatest
common divisor of p and m is 1.

Proposition 1. If p and m are co-prime, then there exists q < m such that
p× q = 1 mod m.

In other words, if we choose our multiplicative encoder, p, such that p is co-
prime to our modulus m, we are guaranteed to have an inverse for p. Let’s
denote this inverse q, and see how it relates to decryption.

Problem 16. Let’s revisit encrypting digits with p = 7 (mod 10).

(i) Find q, the multiplicative inverse of p.

(ii) Encrypt the digits in the table by multiplying by p. Afterward, decrypt
your encrypted digits by multiplying by q.
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(iii) Were you able to successfully encrypt and decrypt all your digits? Explain
why or why not.

Simplified RSA

When we first studied abstract algebra, you may have wondered about prac-
tical applications for studying abstract number systems. One incredibly im-
portant example is the RSA algorithm. RSA is an encryption scheme based
on the idea of using multiplicative inverses to safely transmit information.

Since RSA in its full implementation is already complicated enough for us
instructors, we’ve simplified some of its ideas into a more approachable cipher.
Let’s call this simplifed RSA, and explore how it works!

Problem 17. Suppose our entire class agrees to use p = 11 as our multi-
plicative encoder, with modulus m = 50.

(i) Come up with a message that you want to securely send to a partner.
Convert the message into a numerical form, by replacing letters with
their positions in the alphabet.

(ii) Encrypt your numerical message by multiplying each number by p = 11
(mod m = 50).
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(iii) Send your partner your encrypted message. Since there are fewer than
50 letters in the alphabet, you can simply send the encrypted message in
numerical form.

(iv) Decrypt your partner’s message. (Hint: the multiplicative inverse of 11
(mod 50) is 41.)

As you’ve seen, when we work with large numbers for p and m, even if we
know what the multiplicative encoder is, finding the right decoder can be
difficult. But what if someone was determined enough to try a bunch of
different multiplicative decoders?

Problem 18. Suppose a nosy instructor knew that you and your partner were
communicating in modulo 50, but not what you chose as your multiplicative
encoder. How many different decoders would they have to try before they are
guaranteed to decode your message?
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Problem 19. Suppose instead that you and your partner agreed on your mod-
ulus, m, in private. Without knowing your communication modulus, how could
an instructor go about cracking your cipher?

Problem 20. � A paranoid student might point out that to communicate
with their partner, they have to exchange both m and p. Anyone listening
in on their communication can encrypt and decrypt their messages with the
same degree of difficulty. Can you devise a way to exchange m and p such
that a nosy instructor can’t intercept your messages?
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