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1 Unique Factorization

Last week, we studied examples of number systems other than the integers. Recall that we consider this any
set of ”numbers” with addition, subtraction, and multiplication that work like they do an integers. In order
to make any sense of prime factorizations, however, we have to reconcile two properties of primeness that
we have seen are not the same in any number system. As a reminder:

Definition 1 A number u is called a unit if u divides 1 - that is, there exists a number v such that uv = 1.

Definition 2 A number p is prime if it is not zero or a unit, and whenever p divides ab, p must divide a
or b.

Definition 3 A number p is irreducible if it is not zero or a unit, and p cannot be written as the product
of smaller things. That is, whenever p = ab, either a or b is a unit.

Just like last week, we’ll restrict ourselves to certain kinds of number systems where these are the same.
Last week, we saw that domains have the property that all primes are irreducible, but not all irreducibles
must be prime. As a reminder:

Definition 4 An integral domain (domain for short) is a number system in which whenever ab = 0, either
a = 0 or b = 0.

To finally reconcile our two notions of primeness, we turn to Euclid’s Lemma (Problem 3 from last week) for
inspiration. Its proof was fairly straightforward using the Fundamental Theorem of Arithmetic, which gives
a unique factorization of any integer. So it is natural to restrict our attention further to domains with this
same property.

Definition 5 A domain is called a unique factorization domain (UFD for short) if every number, except
zero and units, can be written as a product of irreducible numbers, uniquely up to multiplication by units.

Problem 1 Show that an irreducible number is prime in a UFD.
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While it’s great that UFD’s have the desired property, we haven’t proven why anything besides the integers
Z is a UFD at all. A few examples are easy:

Problem 2 Show that the rational numbers Q are a UFD. Also show that the integers mod p for some prime
integer p are a UFD.

Last week, we defined the Gaussian integers Z[
√
−1]. As a reminder:

Definition 6 The Gaussian integers, denoted Z[
√
−1], is the set of numbers of the form a+b

√
−1, where

a, b are integers.

Gaussian integers can be added, subtracted, and multiplied by treating
√
−1 as a variable that becomes −1

when squared (just like in the complex numbers - in fact,
√
−1 is just i, but we write it this way because

we can put different numbers under the square root). We’ll now study how Gaussian integers factor - as it
turns out, they will factor uniquely. To prove this, we once again call back to the proof for the integers, the
Fundamental Theorem of Arithmetic, which uses the size of integers. So we introduce a notion of the size of
a Gaussian integer.

Definition 7 The norm of a Gaussian integer α = a+ b
√
−1 is N(α) = a2 + b2.

Problem 3 Compute:

• N(1 +
√
−1)

• N(7−
√
−1)

• N(50 + 33
√
−1)
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Problem 4 Show that, for two Gaussian integers α and β,

a. N(αβ) = N(α)N(β)

b. If α divides β, N(α) divides N(β).

c. Show that α is a unit in the Gaussian integers if and only if N(α) = 1. What are the units?

Problem 5 Does 1 +
√
−1 divide 7−

√
−1? Does it divide 50 + 33

√
−1? How can you tell?
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Problem 6 Prove that the Gaussian integers are a UFD. (Hint: Try to repeat the proof from Problem 2.
In what sense is a Gaussian integer ”smallest”?)

Problem 7 (Challenge) We can similarly define Z[
√
−2] as the set of numbers of the form a + b

√
−2 for

a, b integers. Show that Z[
√
−2] is a UFD.
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2 Prime Gaussian Integers

We conclude by showing an application of prime factorizations of Gaussian integers.

Problem 8 Is 5 still irreducible in Z[
√
−1]? How about 7? 11? 13? Is there a pattern?

Problem 9 Show that every prime integer which is 3 mod 4 is irreducible in Z[
√
−1]

Problem 10 Is 2 irreducible in Z[
√
−1]?

All other prime integers must be congruent to 1 mod 4, since they can’t be even. For these cases, we turn
to a fact from number theory, whose proof we omit because it’s too long.

Theorem 1 For any prime integer p, there exists a number a such that ap−1 = 1 mod p but ak ̸= 1 mod p
for any 0 ≤ k < p− 1. Such a number a is called a primitive root mod p.

Problem 11 Show that if p a prime integer that is 1 mod 4, there exists an integer n such that p divides
n2 + 1. (Hint: Use a primitive root to solve n2 = −1 mod p.)
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Problem 12 Let us factor p in the Gaussian integers, where p is a prime integer that is 1 mod 4.

a. Factor n2 + 1 in Z[
√
−1].

b. Show that prime integers p that are 1 mod 4 are not prime in Z[
√
−1] (and thus, not irreducible either).

c. Show that a Gaussian integer with prime integer norm is irreducible. Therefore, how many factors can
p have? What are their norms?

Problem 13 We now classify the Gaussian primes. Let α be an irreducible (equivalently, prime) Gaussian
integer.

a. Show that α divides N(α).

b. Show that α divides some prime integer.

c. Show that N(α) is either 2, a prime integer that is 1 mod 4, or the square of a prime integer that is 3
mod 4.
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We can use this classification of Gaussian primes to prove the following theorem (originally due to Fermat):

Theorem 2 Let n be a positive integer with prime factorization

n = 2kpe11 ...pell qf11 ...qemm

where p1, ..., pl are distinct primes congruent to 1 mod 4, and q1, ..., qm are distinct primes congruent to 3
mod 4. Then n is the sum of two squares if and only if all of the fj are even.

Problem 14 Prove Theorem 2:

a. Show that n is the sum of two squares if and only if it is the norm of some Gaussian integer.

b. Suppose n is the norm of a Gaussian integer α. Show that if we factorize n as in Theorem 2, all the
fj are indeed even.

c. Conversely, show that if n has this form where each fj is even, then n is the norm of some Gaussian
integer. (Hint: Find a Gaussian integer whose norm is each prime separately, then multiply them
together.)

Problem 15 If you’ve finished all other problems, go back to Problem 7, and after finishing Problem 7, try
to think about what similar theorems are possible if we use the fact that Z[

√
−2] is a UFD.
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