Definable Sets

Prepared by Mark on April 3, 2024

Part 1: Logical Algebra

Definition 1:

Logical operators operate on the values {True, False}, just like algebraic operators operate on numbers. In this handout, we'll use the following operators:

- \neg : not
- \wedge : and
- \lor : or
- $\bullet \rightarrow: \mathrm{implies}$
- (), parenthesis.

The function of these is defined by *truth tables*:

 $A \wedge B$ is only true if both A and B are true. $A \vee B$ is true when A or B (or both) are true. $\neg A$ is the opposite of A, which is why it looks like a "negative" sign.

 $A \rightarrow B$ is a bit harder to understand. Read aloud, this is "A implies B."

The only time \rightarrow is false is when $T \rightarrow F$. This may seem counterintuitive, but it will make more sense as we progress through this handout.

Problem 2:

Evaluate the following.

- $\neg T$
- $\bullet \ F \vee T$
- $\bullet \ T \wedge T$
- $(T \wedge F) \vee T$
- $(T \wedge F) \vee T$
- $(\neg(F \lor \neg T)) \to T$
- $(F \to T) \to (\neg F \lor \neg T)$

Problem 3:

Evaluate the following.

- $A \to T$ for any A
- $(\neg(A \to B)) \to A$ for any A, B
- $(A \to B) \to (\neg B \to \neg A)$ for any A, B

Problem 4: Show that $\neg(A \rightarrow \neg B)$ is equivalent to $A \wedge B$. That is, show that these give the same result for the same A and B. *Hint:* Use a truth table

Problem 5: Can you express $A \lor B$ using only \neg , \rightarrow , and ()?

Note that both \wedge and \vee can be defined using the other logical symbols. The only logical symbols we *need* are \neg , \rightarrow , and (). We include \wedge and \vee to simplify our logical expressions.

Part 2: Structures

Definition 6:

A *universe* is a set of meaningless objects. Here are a few examples:

- $\{a, b, ..., z\}$
- {0,1}
- \mathbb{Z} , \mathbb{R} , etc.

Definition 7:

A structure consists of a universe U and a set of symbols.

A structure's symbols give meaning to the objects in its universe.

Symbols come in three types:

- Constant symbols, which let us specify specific elements of our universe. Examples: $0, 1, \frac{1}{2}, \pi$
- Function symbols, which let us navigate between elements of our universe. Examples: $+, \times, \sin x, \sqrt{x}$
- Relation symbols, which let us compare elements of our universe. Examples: $<, >, \leq, \geq$

The equality check = is **not** a relation symbol. It is included in every structure by default.

Example 8:

The first structure we'll look at is the following:

$$\Bigl(\mathbb{Z}\ \big|\ \{0,1,+,-,<\}\Bigr)$$

This is a structure with the universe \mathbb{Z} that contains the following symbols:

- Constants: $\{0,1\}$
- Functions: {+, -}
 Relations: {<}

If we look at our set of constant symbols, we see that the only integers we can directly refer to in this structure are 0 and 1. If we want any others, we must define them using the tools this structure offers. To "define" an element of a set, we need to write a sentence that is only true for that element. For example, if we want to define 2 in the structure above, we could use the sentence $\varphi(x) = [1 + 1 = x]$. Clearly, this is only true when x = 2.

Problem 9:

Define -1 in $(\mathbb{Z} | \{0, 1, +, -, <\})$.

Let us formalize what we found in the previous two problems.

Definition 10:

A formula in a structure S is a well-formed string of constants, functions, and relations.

You already know what a "well-formed" string is: 1 + 1 is fine, $\sqrt{+}$ is nonsense. For the sake of time, I will not provide a formal definition. It isn't particularly interesting.

A formula can contain one or more *free variables*. These are denoted $\varphi(a, b, ...)$. Formulas with free variables let us define "properties" that certain objects have. For example, x is a free variable in the formula $\varphi(x) = [x > 0]$. $\varphi(3)$ is true and $\varphi(-3)$ is false.

This "free variable" notation is much like the function notation you are used to: $\varphi(x) = [x > 0]$ is similar to f(x) = x + 1, since the values of $\varphi(x)$ and f(x) depend on x.

Definition 11: Definable Elements

Say S is a structure with a universe U. We say an element $e \in U$ is *definable in* S if we can write a formula that only e satisfies.

Problem 12:

Define 2 in the structure $(\mathbb{Z}^+ | \{4, \times\})$. Hint: $\mathbb{Z}^+ = \{1, 2, 3, ...\}$. Also, $2 \times 2 = 4$.

Problem 13: Try to define 2 in the structure $(\mathbb{Z} \mid \{4, \times\})$. Why can't you do it?

Problem 14: What numbers are definable in the structure $(\mathbb{R}^+_0 \mid \{1, 2, \div\})$?

Part 3: Quantifiers

Recall the logical symbols we introduced earlier: $(), \land, \lor, \neg, \rightarrow$ We will now add two more: \forall (for all) and \exists (exists).

Definition 15:

 \forall and \exists are *quantifiers*. They allow us to make statements about arbitrary symbols.

Let's look at \forall first. Let $\varphi(x)$ be a formula. Then, the formula $\forall x \ \varphi(x)$ says " φ is true for all possible x." For example, take the formula $\forall x \ (0 < x)$. In English, this means "For any x, x is bigger than zero," or simply "Any x is positive."

 \exists is very similar: the formula $\exists x \ \varphi(x)$ states that there is at least one x that makes φ true. For example, $\exists (0 < x)$ means "there is a positive number in our set".

Problem 16:

Which of the following are true in \mathbb{Z} ? Which are true in \mathbb{R}_0^+ ? *Hint:* \mathbb{R}_0^+ is the set of positive real numbers and zero.

- $\forall x \ (x \ge 0)$
- $\neg(\exists x \ (x=0))$
- $\forall x \; [\exists y \; (y \times y = x)]$
- $[\exists g \ (g \land g = x)]$
- $\forall xy \exists z \ (x < z < y)$ This is a compact way to write $\forall x \ (\forall y \ (\exists z \ (x < z < y)))$
- $\neg \exists x \ (\forall y \ (x < y))$

Problem 17: Does the order of \forall and \exists in a formula matter? What's the difference between $\exists x \ \forall y \ (x \leq y)$ and $\forall y \ \exists x \ (x \leq y)$? *Hint:* In \mathbb{R}^+ , the first is false and the second is true. \mathbb{R}^+ does not contain zero.

Problem 18: Define 0 in $\left(\mathbb{Z} \mid \{\times\}\right)$

Problem 19: Define 1 in $\left(\mathbb{Z} \mid \{\times\}\right)$

Problem 20: Define -1 in $\left(\mathbb{Z} \mid \{0, <\}\right)$

 $\begin{array}{l} \textbf{Problem 21:} \\ \text{Let } \varphi(x) \text{ be a formula.} \\ \text{Define } (\forall x \ \varphi(x)) \text{ using logical symbols and } \exists. \end{array}$

Part 4: Definable Sets

Armed with $(), \land, \lor, \neg, \rightarrow, \forall$, and \exists , we have enough tools to define sets.

Definition 22: Set-Builder Notation

Say we have a condition c. The set of all elements that satisfy that condition can be written as follows:

 $\{x \mid c \text{ is true}\}$

This is read "The set of x where c is true" or "The set of x that satisfy c."

For example, take the formula $\varphi(x) = \exists y \ (y + y = x)$. The set of all even integers can then be written

$$\{x \mid \varphi(x)\} = \{x \mid \exists y \ (y+y=x)\}$$

Definition 23: Definable Sets

Let S be a structure with a universe U. We say a subset M of U is *definable* if we can write a formula that is true for some x iff $x \in M$.

For example, consider the structure $\left(\mathbb{Z} \mid \{+\}\right)$

Only even numbers satisfy the formula $\varphi(x) = \exists y \ (y + y = x)$, So we can define "the set of even numbers" as $\{x \mid \exists y \ (y + y = x)\}$. Remember—we can only use symbols that are available in our structure!

Problem 24:

Is the empty set definable in any structure?

Problem 25: Define $\{0,1\}$ in $\left(\mathbb{Z}_0^+ \mid \{<\}\right)$

Problem 26:

Define the set of prime numbers in $\left(\mathbb{Z} \mid \{\times, \div, <\}\right)$

Problem 27:

Define the set of nonreal numbers in $(\mathbb{C} \mid \{\operatorname{real}(z)\})$ Hint: real(z) gives the real part of a complex number: real(3 + 2i) = 3 Hint: z is nonreal if $x \in \mathbb{C}$ and $x \notin \mathbb{R}$

Problem 28: Define \mathbb{R}_0^+ in $\left(\mathbb{R} \mid \{\times\}\right)$

Problem 29: Let \triangle be a relational symbol. $a \triangle b$ holds iff a divides b. Define the set of prime numbers in $(\mathbb{Z}^+ | \{ \triangle \})$

Theorem 30: Lagrange's Four Square Theorem

Every natural number may be written as a sum of four integer squares.

Problem 31: Define \mathbb{Z}_0^+ in $\left(\mathbb{Z} \mid \{\times, +\}\right)$

Problem 32: Define < in $\left(\mathbb{Z} \mid \{\times, +\}\right)$

Hint: We can't formally define a relation yet. Don't worry about that for now. You can repharase this question as "given $a, b \in \mathbb{Z}$, can you write a sentence that is true iff a < b?"

Problem 33:

Consider the structure $S = (\mathbb{R} \mid \{0, \diamond\})$ The relation $a \diamond b$ holds if |a - b| = 1

Part 1: Define $\{-1, 1\}$ in S.

Part 2:

Define $\{-2, 2\}$ in S.

Problem 34:

Let P be the set of all subsets of \mathbb{Z}_0^+ . This is called a *power set*. Let S be the structure $(P \mid \{\subseteq\})$

Part 1:

Show that the empty set is definable in S. *Hint:* Defining {} with $\{x \mid x \neq x\}$ is **not** what we need here.

We need $\emptyset \in P$, the "empty set" element in the power set of \mathbb{Z}_0^+ .

Part 2:

Let $x \approx y$ be a relation on P. $x \approx y$ holds if $x \cap y \neq \{\}$. Show that \approx is definable in S.

Part 3: Let f be a function on P defined by $f(x) = \mathbb{Z}_0^+ - x$. This is called the *complement* of the set x.

Part 5: Equivalence

Notation:

Let S be a structure and φ a formula. If φ is true in S, we write $S \models \varphi$. This is read "S satisfies φ "

Definition 35:

Let S and T be structures. We say S and T are *equivalent* and write $S \equiv T$ if for any formula φ , $S \models \varphi \iff T \models \varphi$. If S and T are not equivalent, we write $S \not\equiv T$.

Problem 36: Show that $\left(\mathbb{Z} \mid \{+,0\}\right) \not\equiv \left(\mathbb{R} \mid \{+,0\}\right)$

Problem 37: Show that $\left(\mathbb{Z} \mid \{+,0\}\right) \not\equiv \left(\mathbb{N} \mid \{+,0\}\right)$

Problem 38: Show that $(\mathbb{R} \mid \{+, 0\}) \not\equiv (\mathbb{N} \mid \{+, 0\})$

Problem 39: Show that $(\mathbb{R} \mid \{+, 0\}) \not\equiv (\mathbb{Z}^2 \mid \{+, 0\})$

Problem 40: Show that $\left(\mathbb{Z} \mid \{+,0\}\right) \not\equiv \left(\mathbb{Z}^2 \mid \{+,0\}\right)$