Definable Sets

Prepared by Mark on May 15, 2023

Part 1: Logical Algebra

Definition 1:

Odds are, you are familiar with logical symbols.
In this handout, we'll use the following:

- ᄀ: not
- \wedge : and
- V : or
- \rightarrow : implies
- (), parenthesis.

The function of these is defined by truth tables:

and		
A	B	$A \wedge B$
F	F	F
F	T	F
T	F	F
T	T	T

	or	
A	B	$A \vee B$
F	F	F
F	T	T
T	F	T
T	T	T

implies		
A	B	$A \rightarrow B$
F	F	T
F	T	T
T	F	F
T	T	T

not	
A	$\neg A$
T	F
F	T

$A \wedge B$ is only true if both A and B are true. $A \vee B$ is true when A or B (or both) are true. $\neg A$ is the opposite of A, which is why it looks like a "negative" sign.
$A \rightarrow B$ is a bit harder to understand. Read aloud, this is " A implies B."
The only time \rightarrow is false is when $T \rightarrow F$. Think about it: why does this make sense?

Problem 2:

Evaluate the following.

- $(T \wedge F) \vee T$
- $(\neg(F \vee \neg T)) \rightarrow T$
- $(F \rightarrow T) \rightarrow(\neg F \vee \neg T)$

Problem 3:

Evaluate the following.

- $A \rightarrow T$ for any A
- $(\neg(A \rightarrow B)) \rightarrow A$ for any A, B
- $(A \rightarrow B) \rightarrow(\neg B \rightarrow \neg A)$ for any A, B

Problem 4:

Show that $\neg(A \rightarrow \neg B)$ is equivalent to $A \wedge B$.
That is, show that these give the same result for the same A and B. Hint: Use a truth table

Problem 5:

Can you express $A \vee B$ using only \neg, \rightarrow, and ()?

Note that both \wedge and \vee can be defined using the other logical symbols.
The only logical symbols we need are \neg, \rightarrow, and ().
We include \wedge and \vee to simplify our logical expressions.

Part 2: Structures

Definition 6:

A universe is a set of meaningless objects. Here are a few examples:

- $\{a, b, \ldots, z\}$
- $\{0,1\}$
- \mathbb{Z}, \mathbb{R}, etc.

Definition 7:

A structure consists of a universe U and a set of symbols.
A structure's symbols give meaning to the objects in its universe.
Symbols generally come in three types:

- Constant symbols, which let us specify specific elements of our universe. Examples: 0, 1, $\frac{1}{2}$, π
- Function symbols, which let us navigate between elements of our universe. Examples: $+, \times, \sin x, \sqrt{x}$
- Relation symbols, which let us compare elements of our universe. Examples: $<,>, \leq, \geq$
The equality check $=$ is not a relation symbol. It is included in every structure by default.

Example 8:

The first structure we'll look at is the following:

$$
(\mathbb{Z} \mid\{0,1,+,-,<\})
$$

This is a structure with the universe \mathbb{Z} that contains the following symbols:

- Constants: $\{0,1\}$
- Functions: $\{+,-\}$
- Relations: $\quad\{<\}$

If you look at our set of constant symbols, you'll see that the only integers we can directly refer to in this structure are 0 and 1 . If we want any others, we must define them using the tools the structure offers.
Say we want the number 2 . We could use the function + to define it: $2:=[x$ where $1+1=x]$ We would write this as $2:=[x$ where $+(1,1)=x]$ in proper "functional" notation.

Problem 9:
Can we define -1 in $(\mathbb{Z} \mid\{0,1,+,-,<\})$? If so, how?

Problem 10:

Can we define -1 in $(\mathbb{Z} \mid\{0,+,-,<\})$?
Hint: In this problem, 1 has been removed from the set of constant symbols.

Let us formalize what we found in the previous two problems.

Definition 11:

A formula in a structure S is a well-formed string of constants, functions, and relations.
You already know what a "well-formed" string is: $1+1$ is fine, $\sqrt{+}$ is nonsense.
For the sake of time, I will not provide a formal definition. It isn't particularly interesting.
A formula can contain one or more free variables. These are denoted $\varphi(a, b, \ldots)$.
Formulas with free variables let us define "properties" that certain objects have.
For example, x is a free variable in the formula $\varphi(x)=x>0$.
$\varphi(3)$ is true and $\varphi(-3)$ is false.

Definition 12: Definable Elements

Say S is a structure with a universe U.
We say an element $e \in U$ is definable in S if we can write a formula that only e satisfies.
Problem 13:
Can we define 2 in the structure $\left(\mathbb{Z}^{+} \mid\{4, \times\}\right)$?
Hint: $\mathbb{Z}^{+}=\{1,2,3, \ldots\}$. Also, $2 \times 2=4$.

Problem 14:

Try to define 2 in the structure $(\mathbb{Z} \mid\{4, \times\})$.

Problem 15:

What numbers are definable in the structure $\left(\mathbb{R}_{0}^{+} \mid\{1,2, \div\}\right)$?

Part 3: Quantifiers

Recall the logical symbols we introduced earlier: ()$, \wedge, \vee, \neg, \rightarrow$
We will now add two more: \forall (for all) and \exists (exists).

Definition 16:

\forall and \exists are quantifiers. They allow us to make statements about arbitrary symbols.
Let's look at \forall first. Let $\varphi(x)$ be a formula.
Then, the formula $\forall x \varphi(x)$ says " φ is true for all possible x."
For example, take the formula $\forall x(0<x)$.
In english, this means "For any x, x is bigger than zero," or simply "Any x is positive."
\exists is very similar: the formula $\exists x \varphi(x)$ states that there is at least one x that makes φ true. For example, $\exists(0<x)$ means "there is a positive number in our set".

Problem 17:

Which of the following are true in \mathbb{Z} ?
Which are true in \mathbb{R}_{0}^{+}?
Hint: \mathbb{R}_{0}^{+}is the set of positive real numbers and zero.

- $\forall x(x \geq 0)$
- $\neg(\exists x(x=0))$
- $\forall x[\exists y(y \times y=x)]$
- $\forall x y \exists z(x<z<y) \quad$ This is a compact way to write $\forall x(\forall y(\exists z(x<z<y)))$
- $\neg \exists x(\forall y(x<y))$

Problem 18:

Does the order of \forall and \exists in a formula matter?
What's the difference between $\exists x \forall y(x<y)$ and $\forall y \exists x(x<y)$?
Hint: $\operatorname{In} \mathbb{R}^{+}$, the first is false and the second is true. \mathbb{R}^{+}does not contain zero.

Problem 19:

Define 0 in $(\mathbb{Z} \mid\{\times\})$

Problem 20:
Define 1 in $(\mathbb{Z} \mid\{\times\})$

Problem 21:
Define -1 in $(\mathbb{Z} \mid\{0,<\})$

Problem 22:
Let $\varphi(x)$ be a formula.
Define $(\forall x \varphi(x))$ using logical symbols and \exists.

Part 4: Definable Sets

Armed with ()$, \wedge, \vee, \neg, \rightarrow, \forall$, and \exists, we have enough tools to define sets.

Definition 23: Set-Builder Notation

Say we have a condition c.
The set of all elements that satisfy that condition can be written as follows:

$$
\{x \mid c \text { is true }\}
$$

This is read "The set of x where c is true" or "The set of x that satisfy c."
For example, take the formula $\varphi(x)=\exists y(y+y=x)$.
The set of all even integers can then be written

$$
\{x \mid \varphi(x)\}=\{x \mid \exists y(y+y=x)\}
$$

Definition 24: Definable Sets

Let S be a structure with a universe U.
We say a subset M of U is definable if we can write a formula that is true for some x iff $x \in M$.
For example, consider the structure $(\mathbb{Z} \mid\{+\})$
Only even numbers satisfy the formula $\varphi(x)=\exists y(y+y=x)$,
So we can define "the set of even numbers" as $\{x \mid \exists y(y+y=x)\}$.
Remember-we can only use symbols that are available in our structure!

Problem 25:

Is the empty set definable in any structure?

Problem 26:

Define $\{0,1\}$ in $\left(\mathbb{Z}_{0}^{+} \mid\{<\}\right)$

Problem 27:

Define the set of prime numbers in $(\mathbb{Z} \mid\{\times, \div,<\})$

Problem 28:

Define the set of nonreal numbers in $(\mathbb{C} \mid\{\operatorname{real}(z)\})$
Hint: $\operatorname{real}(z)$ gives the real part of a complex number: real $(3+2 i)=3$
Hint: z is nonreal if $x \in \mathbb{C}$ and $x \notin \mathbb{R}$

Problem 29:

Define \mathbb{R}_{0}^{+}in $(\mathbb{R} \mid\{\times\})$

Problem 30:

Let \triangle be a relational symbol. $a \Delta b$ holds iff a divides b.
Define the set of prime numbers in $\left(\mathbb{Z}^{+} \mid\{\triangle\}\right)$

Theorem 31: Lagrange's Four Square Theorem
Every natural number may be written as a sum of four integer squares.
Problem 32:
Define \mathbb{Z}_{0}^{+}in $(\mathbb{Z} \mid\{\times,+\})$

Problem 33:

Define $<$ in $(\mathbb{Z} \mid\{\times,+\})$
Hint: We can't formally define a relation yet. Don't worry about that for now.
You can repharase this question as "given $a, b \in \mathbb{Z}$, can you write a sentence that is true iff $a<b$?"

Problem 34:

Consider the structure $S=(\mathbb{R} \mid\{0, \diamond\})$
The relation $a \diamond b$ holds if $|a-b|=1$
Part 1:
Define 0 in S.

Part 2:

Define $\{-1,1\}$ in S.

Part 3:

Define $\{-2,2\}$ in S.

Problem 35:

Let P be the set of all subsets of \mathbb{Z}_{0}^{+}. This is called a power set. Let S be the stucture $(P \mid\{\subseteq\})$

Part 1:

Show that the empty set is definable in S.
Hint: Defining $\}$ with $\{x \mid x \neq x\}$ is not what we need here.
We need $\varnothing \in P$, the "empty set" element in the power set of \mathbb{Z}_{0}^{+}.

Part 2:

Let $x \approx y$ be a relation on $P . x \approx y$ holds if $x \cap y \neq\{ \}$.
Show that \approx is definable in S.

Part 3:

Let f be a function on P defined by $f(x)=\mathbb{Z}_{0}^{+}-x$. This is called the complement of the set x. Show that f is definable in S.

