ORMC AMC 10/12 Training Week 7
 Number Theory III

May 14, 2023

1 Pell's Equation

Recall that a Pell's equation is an equation of the form

$$
\begin{equation*}
x^{2}-d y^{2}=1 \tag{1}
\end{equation*}
$$

for any integer d that is not a perfect square.
Theorem 1. When d is not a perfect square, the Pell's equation $x^{2}-d y^{2}=1$ has infinitely many solutions generated by

$$
\begin{equation*}
x_{n}+y_{n} \sqrt{d}=\left(x_{1}+y_{1} \sqrt{d}\right)^{n} \tag{2}
\end{equation*}
$$

where $\left(x_{1}, y_{1}\right)$ is the fundamental solution, i.e., the nontrivial solution (x, y) with smallest $x+y \sqrt{d}$.
Usually we also want integral properties of solutions of Pell's equations, such as how they behave when modulo a number. From (2), we can deduce an integral recurrence relationship of all solutions of (1).

$$
\begin{aligned}
x_{n+1} & =x_{1} x_{n}+d y_{1} y_{n} \\
y_{n+1} & =y_{1} x_{n}+x_{1} y_{n}
\end{aligned}
$$

An variant of Pell's equation is

$$
\begin{equation*}
x^{2}-d y^{2}=-1 \tag{3}
\end{equation*}
$$

for any integer d that is not a perfect square. This type of equations is not guaranteed to have solutions, even if when d is not a perfect square. However, if there is a solution, then there are infinitely many solutions generated by

$$
\begin{equation*}
x_{n}+y_{n} \sqrt{d}=\left(x_{1}+y_{1} \sqrt{d}\right)^{2 n-1} \tag{4}
\end{equation*}
$$

where $\left(x_{1}, y_{1}\right)$ is the fundamental solution.

1. (ARML) Let n be a positive integer, and consider the list $1,2,2,3,3,3, \ldots, n, n, \ldots, n$ where the integer k appears k times in the list for $1 \leq k \leq n$. The integer n will be called "ARMLy" if the median of the list is not an integer. The least ARMLy integer is 3 . Compute the least ARMLy integer greater than 3.
2. Prove that if n is a natural number and $(3 n+1)$ and $(4 n+1)$ are both perfect squares, then 56 will divide n.
3. (AIME) Find the largest integer n satisfying the following conditions:
(i) n^{2} can be expressed as the difference of two consecutive cubes;
(ii) $2 n+79$ is a perfect square.
4. (British Math Olympiad) Find the first integer $n>1$ such that the average of $1^{2}, 2^{2}, \ldots, n^{2}$ is itself a perfect square.
5. (European Girls Math Olympiad) Let S be the set of all positive integers n such that n^{4} has a divisor in the range $n^{2}+1, n^{2}+2, \ldots, n^{2}+2 n$. Prove that there are infinitely many elements of S of each of the forms $7 m, 7 m+1,7 m+2,7 m+5,7 m+6$ and no elements of S of the form $7 m+3$ or $7 m+4$, where m is an integer.

2 Arithmetic Functions

An arithmetic function is simply any function $f: \mathbb{Z} \rightarrow \mathbb{C}$. We say an arithmetic function f is multiplicative, if for any integers a and b with $\operatorname{gcd}(a, b)=1$, there is $f(a b)=f(a) f(b)$. We introduce 3 most important arithmetic functions here.

1. The function $\tau(n)$ is defined to be the number of positive divisors of an integer n.
2. The function $\sigma(n)$ is defined to be the sum of all positive divisors of an integer n.
3. The Euler Phi function $\varphi(n)$ is defined to be the number of positive integers less than n that are relatively prime to n.

Theorem 2. Let $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$ be the prime factorization of n. Then

$$
\begin{aligned}
\tau(n) & =\left(\alpha_{1}+1\right)\left(\alpha_{2}+1\right) \cdots\left(\alpha_{k}+1\right) \\
\sigma(n) & =\prod_{i=1}^{k} \frac{p_{i}^{\alpha_{i}+1}-1}{p_{i}-1} \\
\varphi(n) & =n\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \cdots\left(1-\frac{1}{p_{k}}\right)
\end{aligned}
$$

In particular, they are multiplicative functions.

3 Examples

1. Prove the expression for $\sigma(n)$ in the theorem, i.e.,

$$
\prod_{i=1}^{k} \frac{p_{i}^{\alpha_{i}+1}-1}{p_{i}-1}=\sum_{d \mid n} d
$$

where the summation means summing over all positive divisors of n.
2. Find all n such that $\varphi(n)=12$.
3. Find the sum of even positive divisors of 10000 .

3.1 Exercises

1. What is the sum of the positive integer divisors of $8128 ?$
2. Find all positive integers n such that sum of all its positive divisors is $n^{2}-6 n+5$.
3. Show that for positive integers m and n, there is $\tau(m n) \leq \tau(m) \tau(n)$.
4. Determine the product of all distinct positive integer divisors of $n=420^{4}$.
5. Using the same method as problem 3, conclude that for any positive integer n,

$$
\prod_{d \mid n} d=n^{\frac{\tau(n)}{2}}
$$

6. Let $k>1$ be such that $2^{k}-1$ is a prime number. Show that
(a) k is prime.
(b) $n=2^{k-1}\left(2^{k}-1\right)$ is a perfect number, i.e., it is equal to the sum of its proper divisors.
(c) The product of the positive divisors of n is n^{k}.
7. Let n be a positive integer such that the sum of its positive divisors is at least $2022 n$. Prove that n has at least 2022 distinct prime factors.

4 Bonus Exercises

1. Determine the number of ordered pairs of positive integers (a, b) such that the least common multiple of a and b is $2^{3} 5^{7} 11^{13}$.
2. Using the same method as problem 1, conclude that if $n=p_{1}^{a_{1}} \cdots p_{k}^{a_{k}}$ is a prime decomposition of n, then there are $\left(2 a_{1}+1\right)\left(2 a_{2}+1\right)\left(2 a_{k}+1\right)$ distinct pairs of ordered positive integers (a, b) with $\operatorname{lcm}(a, b)=n$.
3. Use AM-GM to show that for any positive integer $n, \tau(n) \leq 2 \sqrt{n}$.
4. Let $n>1$ be any integer. Show that

$$
\sum_{d \mid n} \frac{d}{\sqrt{n}}=\sum_{d \mid n} \frac{\sqrt{n}}{d}
$$

5. Show that

$$
\sum_{d \mid n} \varphi(d)=n
$$

