## OLGA RADKO MATH CIRCLE: ADVANCED 3

## FERNANDO FIGUEROA AND JOAQUÍN MORAGA

## Spring Quarter - Worksheet 6: Transformations of the projective spaces

In the previous lectures, we studied projective lines $\mathbb{P}_{\mathbb{R}}^{1}$ and projective planes $\mathbb{P}_{\mathbb{R}}^{2}$ in a projective space $\mathbb{P}_{\mathbb{R}}^{3}$. In this worksheet, we will learn some applications of projective geometry. First, we will start by recalling concepts and solving preliminary problems.

The projective plane $\mathbb{P}_{\mathbb{R}}^{2}$ has points with coordinates $[x: y: z]$ and lines given by equations $a x+b y+c z=0$. The dual projective plane $\mathbb{P}_{\mathbb{R}}^{2 \vee}$ will be the space parametrizing lines in $\mathbb{P}_{\mathbb{R}}^{2}$. More precisely, a line $a x+b y+c z=0$ in $\mathbb{P}_{\mathbb{R}}^{2}$, will correspond to the point $[a: b: c]$ in $\mathbb{P}_{\mathbb{R}}^{2 \vee}$.

Problem 6.0 For the following lines in $\mathbb{P}_{\mathbb{R}}^{2}$ : Write down the coordinates of the corresponding points in $\mathbb{P}_{\mathbb{R}}^{2 \vee}$. Draw the lines in $\mathbb{P}_{\mathbb{R}}^{2}$ and the corresponding points in $\mathbb{P}_{\mathbb{R}}^{2 \vee}$.
In $\mathbb{P}_{\mathbb{R}}^{2 \vee}$ identify which triples of points are colinear.

- $l_{0}:\{x=0\}$
- $l_{1}:\{y=0\}$
- $l_{2}:\{z=0\}$
- $l_{3}:\{x+y=0\}$

Problem 6.1 Show that three lines $a_{0} x+b_{0} y+c_{0} z=0, a_{1} x+b_{1} y+c_{1} z=0$ and $a_{2} x+b_{2} y+c_{2} z=0$ in $\mathbb{P}_{\mathbb{R}}^{2}$ intersect at a single point if and only if the corresponding points ( $\left[a_{0}: b_{0}: c_{0}\right],\left[a_{1}: b_{1}: c_{1}\right]$ and $\left[a_{2}: b_{2}: c_{2}\right]$ ) of $\mathbb{P}_{\mathbb{R}}^{2 \vee}$ are colinear.

What is the relation between the common point in $\mathbb{P}_{\mathbb{R}}^{2}$ and the common line in $\mathbb{P}_{\mathbb{R}}^{2 \vee}$ ?

As we established before, we will use coordinates $[x: y: z]$ for $\mathbb{P}_{\mathbb{R}}^{2}$ and coordinates $[a: b: c]$ in $\mathbb{P}_{\mathbb{R}}^{2 \vee}$ We can assign a correspondence between points $[x: y: z]$ in $\mathbb{P}_{\mathbb{R}}^{2}$ and lines $x a+y b+z c=0$ in $\mathbb{P}_{\mathbb{R}}^{2 \vee}$. Notice that the line $x a+y b+z c=0$ has $a, b$ and $c$ as variables and $x, y$ and $z$ as constants.

Problem 6.2 For the following points in $\mathbb{P}_{\mathbb{R}}^{2}$. Wirte down the equations of the corresponding lines in $\mathbb{P}_{\mathbb{R}}^{2 \vee}$.
Draw the points in $\mathbb{P}_{\mathbb{R}}^{2}$ and the corresponding lines in $\mathbb{P}_{\mathbb{R}}^{2 \vee}$.

- $p_{1}:[1: 1: 1]$
- $p_{2}:[1: 0: 1]$
- $p_{3}:[0: 1: 1]$
- $p_{4}:[1: 1: 0]$

For a curve $C$ with equation $f(x, y, z)=0$ in $\mathbb{P}_{\mathbb{R}}^{2}$, with a point $\left[x_{0}, y_{0}, z_{0}\right]$ inside the curve. The equation of the tangent line to $C$ at the point $p$ is:

$$
\frac{\partial f}{\partial x}\left(x_{0}, y_{0}, z_{0}\right) x+\frac{\partial f}{\partial y}\left(x_{0}, y_{0}, z_{0}\right) y+\frac{\partial f}{\partial z}\left(x_{0}, y_{0}, z_{0}\right) z=0
$$

Problem 6.3 For the following curves and points compute the tangent lines:

- $C:=\left\{x^{2}+y^{2}-z^{2}=0\right\}, p:=[0: 1: 1], q:=[3: 4: 5]$
- $C:=\{x=0\}$, any point.
- $C:=\left\{x^{3}+y^{3}+z^{3}=0\right\}, p:=[0: 1:-1], q:[1: 0:-1]$

Now we will define the dual of a general curve in $\mathbb{P}_{\mathbb{R}}^{2}$.
For each point $p$ in a curve $C$ in $\mathbb{P}_{\mathbb{R}}^{2}$, we can take the tangent line to $C$ at $p$. These tangent lines correspond to points in $\mathbb{P}_{\mathbb{R}}^{2 \vee}$. These points in $\mathbb{P}_{\mathbb{R}}^{2 \vee}$ form a curve $C^{\vee}$, called the dual curve of $C$.

If $C$ is a smooth curve of degree $d$, then the curve $C^{\vee}$ is a curve of degree $d(d-1)$
Problem 6.4 Using the fact that the following conics are smooth, compute the defining function of $C^{\vee}$ :

- $C:=\left\{x^{2}+y^{2}-z^{2}=0\right\}$
- $C:=\left\{x z-y^{2}=0\right\}$
- $C:=\{x y+y z+z x=0\}$

Hint: You can use that five points define a conic.

Let $C$ be a curve given by an equation of the form $P x^{2}+Q y^{2}+R z^{2}=0$. The equation of the tangent line to $\left[x_{0}: y_{0}: z_{0}\right]$ is $2 P x_{0} x+2 Q y_{0} y+2 R z_{0} z=0$. Hence the points in $C^{\vee}$ are of the form $\left[2 P x_{0}: 2 Q y_{0}: 2 R z_{0}\right]=\left[P x_{0}:\right.$ $\left.Q y_{0}: R z_{0}\right]$.

Since $\left[x_{0}: y_{0}: z_{0}\right]$ is in $C$, we have that $P x_{0}^{2}+Q y_{0}^{2}+R z_{0}^{2}=0$. Therefore the points in $C^{\vee}[a: b: c]=\left[P x_{0}\right.$ : $\left.Q y_{0}: R z_{0}\right]$ are of the form $a^{2}=P^{2} x_{0}^{2}, b^{2}=Q^{2} y_{0}^{2}$ and $c^{2}=R^{2} z_{0}^{2}$.

Therefore the equation of $C^{\vee}$ is $\frac{1}{P} a^{2}+\frac{1}{Q} b^{2}+\frac{1}{R} c^{2}=0$. Remember that in $\mathbb{P}_{\mathbb{R}}^{2 \vee}, a, b$ and $c$ are the variables.
Problem 6.5 Following the method for curves of the form $P x^{2}+Q y^{2}+R z^{2}=0$, compute the equation of the curve $C^{\vee}$ for the following conics:

- $P x y+Q z^{2}=0$
- $P x y+Q y z+R z x=0$

Verify that these general formulas were achieved in the particular cases of Problem 6.4

A line arrangement in $\mathbb{P}_{\mathbb{R}}^{2}$ is simply a collection of lines in $\mathbb{P}_{\mathbb{R}}^{2}$.
Sylvester-Gallai Theorem: Given a finite set of points in $\mathbb{P}_{\mathbb{R}}^{2}$, there always exist a line that contains exactly two of the points or a line that contains all of the points.

Problem 6.6 Using the dual projective plane and Sylvester-Gallai Theorem, prove that given a line arrangement in $\mathbb{P}_{\mathbb{R}}^{2}$ there always exists a pair of lines that intersect in a point not contained in any other line of the line arrangement or all the lines pass through a common point.

This is not true for $\mathbb{P}_{\mathbb{C}}^{2}$. Can you find a counterexample? How many lines do you need for a counterexample?
uCLA Mathematics Department, Box 951555, Los Angeles, CA 90095-1555, USA.
Email address: fzamora@math.princeton.edu
UCLA Mathematics Department, Box 951555, Los Angeles, CA 90095-1555, USA.
Email address: jmoraga@math.ucla.edu

