Graph Theory IV ° Oleg Gleizer (2021) . Revised by Andy, Naji

Graphs Crossings on Surfaces

Last packet we began studying the properties of the drawings of a graph.
Remember that when we draw a graph the vertices are drawn as points,
and the edges are drawn as lines connecting the points. Of course, the lines
representing edges will intersect at the points representing vertices. However,
sometimes the lines also intersect at points that do not represent vertices,
and we call these extra intersections crossings. Sometimes we can draw a
graph in different ways, so that the different drawings have different numbers
of crossings. The crossing number of a graph G is the smallest number of
crossings that any drawing of G must always have.

Problem 1. The drawing of the graph G below has five crossings.

Figure 1: Graph GG with five crossings

However, by moving the vertices around, we can redraw G in a way that has
Nno Crossings.

Figure 2: Graph G with no crossings

(t) The crossing number of G is equal to

(ii) The drawing in Figure |1 and the drawing in Figure |4 are isomorphic,
meaning they represent the same graph G. Label the vertices and edges
in Figure (1] and Figure |3 so that corresponding vertices/edges in the
drawings have the same labels.



So far we have only been drawing graphs on the two-dimensional plane. But,
why can’t we draw on other two-dimensional surfaces, like the sphere, the
cylinder, or the Mobius strip? Well, it turns out we can! Let S represent
your favorite one of these surfaces and let G represent your favorite graph.
If we draw G on S, the lines representing edges might accidentally intersect
at points that do not represent vertices, and we call these extra intersections
S-crossings. The S-crossing number of G is the smallest number of S-
crossings that any drawing of G on S must always have.

Problem 2. Try drawing each of the graphs on the surfaces that the instructor
has given you. Then, wrtie down what you think the crossing number of each
graph on each surface is, in the chart below.
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After experimenting with drawings on different surfaces, you would be right
to wonder why some surfaces help us remove more crossings than we can on
the plane, while some aren’t any better than the plane. Fully answering this
question leads to a lot of beautiful and advanced mathematics. Today we will
just scratch the surface (hahaha get the pun?).

Understanding the sphere

Imagine you put a hollow, translucent sphere on top of a table and shined a
light at the “north pole”. Then each point on the sphere has its shadow on
the table. The shadow (), the point on the sphere P, and the north pole NN,
all lie on the same line, as in the diagram below.
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This way of associating the points on the sphere to points (their shadows)
on the plane is called stereographic projection. We can visualize it better
through the following video.

Stereographic projection
https://www.youtube.com/watch?v=VX-OLaeczgk

Problem 3. Stereographic projection associates circles that don’t pass through
the north pole to circles on the plane. Can you figure out what happens to
circles that pass through the north pole?


https://www.youtube.com/watch?v=VX-0Laeczgk

Stereographic projection is a very useful tool for us because it lets us associate
drawings of graphs on the sphere to drawings of graphs on the plane.

Problem 4. Consider the graph below that is drawn on the sphere, which is
called the spherical tetrahedron.

(i) Draw what the spherical projection of the graph onto the plane looks like
iof the north pole coincides with one of the vertices of the original graph.

(ii) Draw what the spherical projection of the graph onto the plane looks like
if the north pole lies on one of the edges of the original graph (but not
on a vertec).

This problem continues to the next page.



This is a continuation of the problem on the prior page.
(ii1) Draw what the spherical projection of the graph onto the plane looks like
iof the north pole does not coincide with a vertex or lie on one of the edges

of the graph.

(iv) Your answer to part (iit) should be a planar graph. If needed, redraw it
below so that there are no crossings. Next, compute the Fuler character-

1stic of this planar graph.



Problem 5. Consider the graph below that is drawn on the sphere, which is
called the spherical octahedron.
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(i) Draw what the spherical projection of the graph onto the plane looks like
iof the north pole coincides with one of the vertices of the original graph.

(ii) Draw what the spherical projection of the graph onto the plane looks like
if the north pole lies on one of the edges of the original graph (but not
on a vertezx).

This problem continues to the next page.



This is a continuation of the problem on the prior page.
(ii1) Draw what the spherical projection of the graph onto the plane looks like
iof the north pole does not coincide with a vertex or lie on one of the edges

of the graph.

(iv) Your answer to part (iit) should be a planar graph. If needed, redraw it
below so that there are no crossings. Next, compute the Fuler character-

1stic of this planar graph.

Problem 6. What do you notice about you answer to Problem || part (iv)
and Problem [J part (iv)?



Problem [] and Problem [5| give us examples of a much more important phe-
nomenon. Suppose you draw a graph on the sphere that has zero sphere-
crossings. Then the stereographic projection of this graph (where the north
pole is not on an edge or vertex) is a drawing on the plane that has zero
planar-crossings! The opposite is also true; if you start with a graph drawn
on the plane with zero plane-crossings, then it is the shadow of a drawing of
the same graph with zero sphere-crossings. In other words, stereographic pro-
jection gives us a correspondence between drawings with zero sphere-crossings
and drawings with zero-plane crossings.

This observation explains why your answers for the plane and sphere to Prob-
lem 2] are the same. It also explains your answer to Problem [6], since we learned
last time that the Euler characteristic of any planar graph equals two. We
can even generalize Problem [0] a bit further.

A polyhedron is a 3-dimensional shape that has flat polygonal faces, straight
edges, and sharp corners. Some examples are:

Figure 3: A tetrahedron Figure 4: An octahedron

Figure 5: A small stellated dodecahedron



For a polyhedron P, the Euler characteristic of P (written x) is defined
to be
x=V-E+F

where V' is the number of vertices of P, E be the number of edges of P, and
F be the number of faces of P. For the tetrahedron (see Figure |3), we have
that

V=4  E=6, F=4, y=4—6+4=

For the octahedron (see Figure {l), we have that

V=6, FE=12, F=8  Yy=6—12+8=

For the small stellated dodecahedron (see Figure [5)), we have that

V=12, E=30, F=12, y=12-30+12=

Notice how the Euler characteristic of the small stellated polyhedron is dif-
ferent than that of the tetrahedron and octahedron. This is because the
tetrahedron and octahedron are spherical polyhedra, meaning they are
polyhedra that fit snuggly inside a sphere with all of the vertices touching the
sphere. Meanwhile the small stellated dodecahedron is not spherical.

Spherical polyhedra are special because they can be represented as graphs
on the sphere with zero sphere-crossings! For example, the tetrahedron in
Figure |3| corresponds to the drawing of the graph in Problem {4] on the sphere.
Moreover, the octahedron in Figure |4 corresponds to the drawing of the graph
in Problem [5[ on the sphere. These graph representations of spherical polyhe-
dra let us prove the following result.

Problem 7. Prove that the Euler characteristic of any spherical polyhedron
1 equal to two.



Problem |7 sheds light (haha get it?) on the somewhat mysterious infinite face
of a planar graph. Recall that when we defined Euler characteristic for planar
graphs, we asked you to include the exterior infinite face in the face count.
This is because a planar graph is the shadow of a drawing on the sphere that
is the graph of a spherical polyhedra. The infinite face of the planar graph
becomes a finite face of the polyhedron, just like all the other faces!

This is the end of our journey exploring graphs on spheres. The key insight
is that we have a tool that lets us switch between graphs on the plane and
graphs on the sphere: spherical projection! Can you think of a similar way to
associate points on the cylinder to points on the plane?” What about ways of
associating points on the Mobius strip to points on the plane? The complete
answers to these questions require the rich and beautiful math of topology,
which we hope to inspire you all to learn someday.
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