## OLGA RADKO MATH CIRCLE: ADVANCED 3

## JOAQUÍN MORAGA

## Spring Quarter - Worksheet 3: Applications of Projective Geometry I

In the previous lectures, we studied projective lines $\mathbb{P}_{\mathbb{R}}^{1}$ and projective planes $\mathbb{P}_{\mathbb{R}}^{2}$ in a projective space $\mathbb{P}_{\mathbb{R}}^{3}$. In this worksheet, we will learn some applications of projective geometry. First, we will start by recalling some concepts and solving some preliminary problems.

Problem 1.0: Consider the projective line $\ell$ in the projective space $\mathbb{P}_{\mathbb{R}}^{2}$ parametrized by

$$
[s+t: s-t: s+t] .
$$

Find a single linear equation that describes the line $\ell$.
Solution 1.0:

Problem 1.1: Consider the projective plane $P$ in $\mathbb{P}_{\mathbb{R}}^{3}$ parametrized by the equations:

$$
[s-t: s+t+r: s-r: s+t+r] .
$$

Find a single linear equation that describes the plane $P$.
Solution 1.1:

Problem 1.2: Consider the point $p_{0}:=[1: 0: 0: 0]$ in the projective space $\mathbb{P}_{\mathbb{R}}^{3}$. Consider the plane

$$
P:=\left\{\left[x_{0}: x_{1}: x_{2}: x_{3}\right] \mid x_{0}+x_{1}+x_{2}+x_{3}=0\right\} .
$$

Describe the set of projective lines $\ell$ that pass through $p_{0}$ and intersect the plane $P$ once.
Solution 1.2:

Problem 1.3: Let $r \in \mathbb{R}$ be a real parameter. For each $r$, we consider a projective line

$$
\ell_{r}:=\left\{[s+t: s-t: r s+r t] \mid[s: t] \in \mathbb{P}_{\mathbb{R}}^{1}\right\} \subset \mathbb{P}_{\mathbb{R}}^{2}
$$

Describe these lines for the values $r=0, r=1$, and $r=2$.
Draw how these three projective lines $\ell_{0}, \ell_{1}$, and $\ell_{2}$ intersect in the projective plane.

Is there a point in the projective plane that is contained in all the lines $\ell_{r}$ ?

## Solution 1.3:

A family of lines in $\mathbb{P}_{\mathbb{R}}^{2}$ is a set of lines $\left\{\ell_{t} \mid t \in \mathbb{R}\right\}$ parametrized with a real parameter $t$.
For instance, the lines:

$$
\ell_{t}:=\left\{\left[x_{0}: x_{1}: x_{2}\right] \mid t x_{0}+x_{1}+x_{2}=0\right\} \subset \mathbb{P}_{\mathbb{R}}^{2}
$$

is a family of projective lines in the projective plane. From the description, we can see that

$$
\ell_{0} \cap \ell_{1}=[0: 1:-1] .
$$

We say that the family of lines pass through the point $p_{0}$ if every line $\ell_{t}$ in the family contains $p_{0}$. We may also call $p_{0}$ a fixed point of the family.

Problem 1.4: Find a family of projective lines in $\mathbb{P}_{\mathbb{R}}^{2}$ so that all of them contain the point $[0: 1: 0]$.
Can you find a family of lines $\ell_{t}$ such that they do not have a common intersection point?
Find a family of projective lines in the projective plane $\mathbb{P}_{\mathbb{R}}^{2}$ with a fixed point at infinity. Write the corresponding family of lines in $\mathbb{R}^{2}$.
Solution 1.4:

A family of planes in $\mathbb{P}_{\mathbb{R}}^{3}$ is a set of planes $\left\{P_{t} \mid t \in \mathbb{R}\right\}$ parametrized with a real parameter $t$.
For instance, the planes:

$$
P_{t}:=\left\{\left[x_{0}: x_{1}: x_{2}: x_{3}\right] \mid x_{0}+t x_{1}+t x_{2}+x_{3}=0\right\} \subset \mathbb{P}_{\mathbb{R}}^{3}
$$

is a family of projective planes in the projective space. From the description, we can see that

$$
P_{0} \cap P_{1}=\ell:=\left\{[t: s:-s:-t] \mid[s: t] \in \mathbb{P}^{1}\right\}
$$

If the family is independent of the parameter $t$, i.e., the equation defining the planes does not involve $t$, then we call this the trivial family. Meaning, all the planes in the family are a fixed projective plane $P_{0}$.

Problem 1.5: Consider the projective line

$$
\ell:=\left\{[s: t+s: t-s: t] \mid[t: s] \in \mathbb{P}_{\mathbb{R}}^{1}\right\}
$$

Find a family of projective planes $P_{t}$ so that $\ell \subset P_{t}$ for every $t \in \mathbb{R}$, i.e., the line $\ell$ is a fixed line for the family of projective planes.

Can you find a family of projective lines in $\mathbb{P}_{\mathbb{R}}^{3}$ without a fixed point?
Can you find a family of projective planes in $\mathbb{P}_{\mathbb{R}}^{3}$ without a fixed point?
Solution 1.5:

A projective plane in $\mathbb{P}_{\mathbb{R}}^{3}$ is the space defined by a single equation of the form:

$$
\lambda_{0} x_{0}+\lambda_{1} x_{1}+\lambda_{2} x_{2}+\lambda_{3} x_{3}=0
$$

where not all the $\lambda_{i}$ are zero.

Problem 1.5: Consider the projective plane $H$ in $\mathbb{P}_{\mathbb{R}}^{3}$ defined by the equation

$$
2 x_{0}+x_{1}+x_{2}+2 x_{3}=0
$$

Consider the projective line $\ell$ parametrized by

$$
[s: s: t: t] .
$$

Find all the points of intersection of $\ell$ and $H$.

## Solution 1.5:

In this problem, we will analyse Desargue's theorem in $\mathbb{R}^{2}$. The theorem is as follows.
Theorem (Desargues): Let two triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ be such that the lines joining corresponding vertices, namely $A A^{\prime}, B B^{\prime}$, and $C C^{\prime}$, pass through a common point $O$. Then, the three pairs of corresponding sides intersect in three points

$$
\begin{aligned}
P & =\overline{A B} \cap \overline{A^{\prime} B^{\prime}} \\
Q & =\overline{B C} \cap \overline{B^{\prime} C^{\prime}} \\
R & =\overline{A C} \cap \overline{A^{\prime} C^{\prime}}
\end{aligned}
$$

which lie in a straight line. This means that the points $P, Q$, and $R$ are collinear.
Problem 1.6: Draw two different situations in which the conditions of Desargues' theorem hold.
Check with your classmates that the statement of the theorem hold in this situation.

In case that anyone in the group knows a proof of Desargues theorem using Euclidean geometry. They must explain it to the rest of the students.
Solution 1.6:

Instead of considering two triangles $\Delta:=A B C$ and $\Delta^{\prime}:=A^{\prime} B^{\prime} C^{\prime}$ in $\mathbb{R}^{2}$ as in Desagues Theorem, we can consider this points in $\mathbb{P}_{\mathbb{R}}^{2}$. Or even in $\mathbb{P}_{\mathbb{R}}^{3}$. We will prove that Desargues' theorem holds for both spaces $\mathbb{P}_{\mathbb{R}}^{2}$ and $\mathbb{P}_{\mathbb{R}}^{3}$. When we prove Desargues' theorem in the projective plane (using projective geometry), we are also proving it in $\mathbb{R}^{2}$. Because three collinear points in $\mathbb{R}^{2}$ correspond to three collinear points in $\mathbb{P}_{\mathbb{R}}^{2}$. First, we will prove the theorem in the case that both triangles are in the projective space $\mathbb{P}_{\mathbb{R}}^{3}$. We will assume that the triangles are not contained in a common projective plane.

Desargues Theorem in the projective space: Consider the triangles $\Delta$ and $\Delta^{\prime}$ in the projective space $\mathbb{P}_{\mathbb{R}}^{3}$. Each triangle $\Delta$ and $\Delta^{\prime}$ are contained in two projective planes $H$ and $H^{\prime}$. Since we are assuming that the triangles are not contained in a commont projective plane, then $H \neq H^{\prime}$. Two distinct planes in the projective space must intersect along a line. We write $H \cap H^{\prime}=\ell$.

We argue that the lines $\overline{A B}$ and $\overline{A^{\prime} B^{\prime}}$ intersect at a point $P$. Indeed, both projective lines belong to the projective plane determined by the triangle $O A B$, so they must intersect at a point $P$. Analogously, we conclude that

$$
\overline{A C} \cap \overline{A^{\prime} C^{\prime}}=R
$$

and

$$
\overline{B C} \cap \overline{B^{\prime} C^{\prime}}=Q .
$$

Now, we argue that the points $P, Q$, and $R$ are collinear. Note that $\overline{A B}$ is contained in $H$ and $\overline{A^{\prime} B^{\prime}}$ is contained in $H^{\prime}$. Then, the intersection of both lines must be contained in $H \cap H^{\prime}=\ell$. Thus, $P$ must be contained in $\ell$. Analogously, we conclude that $Q$ and $R$ must be contained in the line $\ell$. This finishes the proof: the three points $P, Q$, and $R$ are contained in $\ell$.

Problem 1.7: Draw the proof of Desargues' theorem for the projective space.
Solution 1.7:

Now, we turn to prove Desargues' theorem in the projective plane. To do so, we will use the case of Desargues' theorem in the projective space.

Desargues' Theorem in the projective plane: Consider the two triangles $\Delta:=A B C$ and $\Delta^{\prime}=A^{\prime} B^{\prime} C^{\prime}$ in $\mathbb{P}_{\mathbb{R}}^{2}$. We can visualize the projective plane $H:=\mathbb{P}_{\mathbb{R}}^{2}$ inside a projective space $\mathbb{P}_{\mathbb{R}}^{3}$. Consider a point $X$ not contained in $H$. Draw the lines joining $X$ to all the points in the diagram, i.e., $O, A, B, C, A^{\prime}, B^{\prime}$, and $C^{\prime}$. Choose $D$ in the projective line $\overline{X B}$, different from $B$. Let $D^{\prime}=\overline{O D} \cap \overline{X B^{\prime}}$. Then, the two triangles $A D C$ and $A^{\prime} D^{\prime} C^{\prime}$ are contained in different projective planes and are perspective from $O$. From the previous case, we conclude that the points

$$
\begin{aligned}
P^{\prime} & =\overline{A D} \cap \overline{A^{\prime} D^{\prime}} \\
Q & =\overline{A C} \cap \overline{A^{\prime} C^{\prime}}
\end{aligned}
$$

and

$$
R^{\prime}=\overline{D C} \cap \overline{D^{\prime} C^{\prime}}
$$

are collinear. Then, there exists a unique plane $H^{\prime}$ containing $P^{\prime}, Q, R^{\prime}$, and $X$. The points $P, Q$, and $R$ are contained in the line $H \cap H^{\prime}$.

Problem 1.8: Draw the proof of Desargues' theorem in the projective plane.
Solution 1.8:

UCLA Mathematics Department, Box 951555, Los Angeles, CA 90095-1555, USA.
Email address: jmoraga@math.ucla.edu

