## OLGA RADKO MATH CIRCLE: ADVANCED 3

JOAQUÍN MORAGA

## Spring Quarter - Worksheet 2: Projective Lines and Planes

Today we will study lines and planes in the projective space $\mathbb{P}_{\mathbb{R}}^{3}$. Often, we call $\mathbb{P}_{\mathbb{R}}^{1}$ the projective line, we call $\mathbb{P}_{\mathbb{R}}^{2}$ the projective plane, and we call $\mathbb{P}_{\mathbb{R}}^{3}$ the projective space. Thus, today we will be studying projective lines and planes in the projective space.

Problem 1.0: For the following triples of lines in $\mathbb{P}_{\mathbb{R}}^{2}$, draw how they intersect and at which points they intersect.

- $\ell_{1}=\left\{x_{0}=0\right\}, \ell_{2}=\left\{x_{1}=0\right\}$, and $\ell_{3}=\left\{x_{2}=0\right\}$.
- $\ell_{1}=\left\{x_{0}+x_{1}=0\right\}, \ell_{2}=\left\{x_{0}+x_{2}=0\right\}$, and $\ell_{3}=\left\{x_{1}+x_{2}=0\right\}$.
- $\ell_{1}=\left\{x_{0}+x_{1}+x_{2}=0\right\}, \ell_{2}=\left\{x_{0}+2 x_{1}=0\right\}$, and $\ell_{3}=\left\{2 x_{0}+x_{1}=0\right\}$.


## Solution 1.0:

Problem 1.1: Consider the line

$$
\ell:=\left\{\left[x_{0}: x_{1}: x_{2}\right] \mid x_{0}+x_{1}+x_{2}=0\right\}
$$

in the projective space $\mathbb{P}_{\mathbb{R}}^{2}$. Find all the projective lines in $\mathbb{P}_{\mathbb{R}}^{2}$ that intersect $\ell$ only at infinity. Solution 1.1:

Problem 1.2: Consider the point $p:=[0: 1: 0]$ in $\mathbb{P}_{\mathbb{R}}^{2}$. Describe the set of all the projective lines $\ell$ that pass through the point $p$.
Solution 1.2:

A projective line in $\mathbb{P}_{\mathbb{R}}^{3}$ is defined by two linear equations

$$
\lambda_{0} x_{0}+\lambda_{1} x_{1}+\lambda_{2} x_{2}+\lambda_{3} x_{3}=0 \quad \text { and } \quad \mu_{0} x_{0}+\mu_{1} x_{1}+\mu_{2} x_{2}+\mu_{3} x_{3}=0
$$

where $\left[\lambda_{0}: \lambda_{1}: \lambda_{2}: \lambda_{3}\right]$ and $\left[\mu_{0}: \mu_{1}: \mu_{2}: \mu_{3}\right]$ are two different points in $\mathbb{P}_{\mathbb{R}}^{3}$.
Problem 1.3: Describe the points in $\mathbb{P}_{\mathbb{R}}^{3}$ satisfying the equations:

$$
x_{0}+x_{1}+x_{2}+x_{3}=0
$$

and

$$
x_{0}-x_{3}=0
$$

Solution 1.3:

Another way to define a projective line in $\mathbb{P}_{\mathbb{R}}^{3}$ is parametrically, i.e., via a function

$$
\mathbb{P}_{\mathbb{R}}^{1} \rightarrow \mathbb{P}_{\mathbb{R}}^{3}
$$

of the form:

$$
[s: t] \mapsto\left[l_{0}(s, t): l_{1}(s, t): l_{2}(s, t): l_{3}(s, t)\right]
$$

where $l_{i}$ are homogeneous linear functions in the variables $s$ and $t$.
Problem 1.4: Consider the projective line in $\mathbb{P}_{\mathbb{R}}^{3}$ defined by the equations:

$$
x_{0}+2 x_{1}+x_{2}=0
$$

and

$$
x_{1}+2 x_{2}+x_{3}=0
$$

Describe this projective line parametrically.
Solution 1.4:

A projective plane in $\mathbb{P}_{\mathbb{R}}^{3}$ is the space defined by a single equation of the form:

$$
\lambda_{0} x_{0}+\lambda_{1} x_{1}+\lambda_{2} x_{2}+\lambda_{3} x_{3}=0
$$

where not all the $\lambda_{i}$ are zero.
Problem 1.5: Consider the projective plane $H$ in $\mathbb{P}_{\mathbb{R}}^{3}$ defined by the equation

$$
2 x_{0}+x_{1}+x_{2}+2 x_{3}=0
$$

Consider the projective line $\ell$ parametrized by

$$
[s: s: t: t] .
$$

Find all the points of intersection of $\ell$ and $H$.
Solution 1.5:

The plane given by $\left\{x_{3}=0\right\}$ in $\mathbb{P}_{\mathbb{R}}^{3}$ is called the hyperplane at infinity.
Problem 1.6: Consider the hyperplane

$$
H:=\left\{x_{0}+2 x_{1}+2 x_{2}+x_{3}=0\right\}
$$

in $\mathbb{P}_{\mathbb{R}}^{3}$. Consider the projective line $\ell$ described parametrically:

$$
[s: t: s: t]
$$

Describe the points at infinity of $H$.
Describe the points at infinity of $\ell$.
Describe the points of intersection of $H$ and $\ell$.

## Solution 1.6:

We learnt that two projective lines always intersect in $\mathbb{P}_{\mathbb{R}}^{2}$.
Problem 1.7: Find examples of two projective lines in $\mathbb{P}_{\mathbb{R}}^{3}$ that do not intersect.
Find examples of three projective lines in $\mathbb{P}_{\mathbb{R}}^{3}$ that do not intersect.
Solution 1.7:

Problem 1.8: Show that two distinct planes in $\mathbb{P}_{\mathbb{R}}^{3}$ always intersect along a projective line. Give an example in which this does not happen in $\mathbb{R}^{3}$.
Give an example of two projective planes in the projective space $\mathbb{P}_{\mathbb{R}}^{3}$ that only intersect at infinity.
Solution 1.8:

Problem 1.9: Consider the planes

$$
H_{0}:=\left\{x_{0}=0\right\}, \quad H_{1}:=\left\{x_{1}=0\right\}, \quad H_{2}:=\left\{x_{2}=0\right\}, \quad \text { and } \quad H_{3}:=\left\{x_{3}=0\right\}
$$

in $\mathbb{P}_{\mathbb{R}}^{3}$. Find all the intersections $H_{i} \cap H_{j}$ and triple intersections $H_{i} \cap H_{j} \cap H_{k}$ of the previous projective planes.
Is there any point in the projective space that lies in the intersection of all these projective planes?
Give a geometric representation of how these planes intersect in the space.

## Solution 1.9

UCLA Mathematics Department, Box 951555, Los Angeles, CA 90095-1555, USA.
Email address: jmoraga@math.ucla.edu

