Lattices

Prepared by Mark on April 3, 2024

Definition 1:

The integer lattice $\mathbb{Z}^n \subset \mathbb{R}^n$ is the set of points with integer coordinates.

Problem 2: Draw \mathbb{Z}^2 .

Definition 3:

We say a set of vectors $\{v_1, v_2, ..., v_k\}$ generates \mathbb{Z}^n if every lattice point can be written uniquely as

$$a_1v_1 + a_2v_2 + \dots + a_kv_k$$

for integer coefficients a_i . It is fairly easy to show that k must be at least n.

Problem 4:

Which of the following generate \mathbb{Z}^2 ?

• {(1,2), (2,1)} • {(1,0), (0,2)}

• $\{(1,1),(1,0),(0,1)\}$

Problem 5:

Find a set of two vectors that generates \mathbb{Z}^2 . Don't say $\{(0,1), (1,0)\}$, that's too easy.

Problem 6:

Find a set of vectors that generates \mathbb{Z}^n .

Definition 7:

A *fundamental region* of a lattice is the parallelepiped spanned by a generating set. The exact shape of this region depends on the generating set we use.

Problem 8:

Draw two fundamental regions of \mathbb{Z}^2 using two different generating sets. Verify that their volumes are the same.

Part 1: Minkowski's Theorem

Theorem 9: Blichfeldt's Theorem

Let X be a finite connected region. If the volume of X is greater than 1, X must contain two distinct points that differ by an element of \mathbb{Z}^n . In other words, there exist distinct $x, y \in X$ so that $x - y \in \mathbb{Z}^n$.

Intuitively, this means that you can translate X to cover two lattice points at the same time.

Problem 10:

Draw a region in \mathbb{R}^2 with volume greater than 1 that contains no lattice points. Find two points in that region which differ by an integer vector. *Hint:* Area is two-dimensional volume.

Problem 11:

The following picture gives an idea for the proof of Blichfeldt's theorem in \mathbb{Z}^2 . Explain the picture and complete the proof.

Problem 12:

Let X be a region $\in \mathbb{R}^2$ of volume k. How many integral points must X contain after a translation?

Definition 13:

A region X is *convex* if the line segment connecting any two points in X lies entirely in X.

Problem 14:

- Draw a convex region in the plane.
- Draw a region that is not convex.

Definition 15:

We say a region X is symmetric if for all points $x \in X$, -x is also in X.

Problem 16:

- Draw a symmetric region.
- Draw an asymmetric region.

Theorem 17: Minkowski's Theorem

Every convex set in \mathbb{R}^n that is symmetric with respect to the origin and which has a volume greater than 2^n contains an integral point that isn't zero.

Problem 18:

Draw a few sets that satisfy Theorem 17 in \mathbb{R}^2 . What is the simplest region that has the properties listed above?

Problem 19:

Let K be a region in \mathbb{R}^2 satisfying Theorem 17. Let K' be this region scaled by $\frac{1}{2}$.

- How does the volume of K' compare to K?
- Show that the sum of any two points in K' lies in K Hint: Use convexity.
- Apply Blichfeldt's theorem to K' to prove Minkowski's theorem in \mathbb{R}^2 .

Problem 20:

Let K be a region in \mathbb{R}^n satisfying Theorem 17. Scale this region by $\frac{1}{2}$, called $K' = \frac{1}{2}K$.

- How does the volume of K' compare to K?
- Show that the sum of any two points in K' lies in K
- Apply Blichfeldt's theorem to K' to prove Minkowski's theorem.

Part 2: Polya's Orchard Problem

You are standing in the center of a circular orchard of integer radius R. A tree of radius r has been planted at every integer point in the circle. If r is small, you will have a clear line of sight through the orchard. If r is large, there will be no clear line of sight through in any direction:

Problem 21:

Show that you will have at least one clear line of sight if $r < \frac{1}{\sqrt{R^2+1}}$. Hint: Consider the line segment from (0,0) to (R,1). Calculate the distance from the closest integer points to the ray.

Problem 22:

Show that there is no line of sight through the orchard if $r > \frac{1}{R}$. You may want to use the following steps:

- Show that there is no line of sight if $r \ge 1$.
- Suppose r < 1 and $r > \frac{1}{R}$. Then, $R \ge 2$. Choose a potential line of sight passing through an arbitrary point P on the circle. Thicken this line of sight equally on both sides into a rectangle of width 2r tangent to P and -P. From here, use Minkowski's theorem to get a contradiction. Don't forget to rule out any lattice points that sit outside the orchard but inside the rectangle.

Problem 23: Challenge

Prove that there exists a rational approximation of $\sqrt{3}$ within 10^{-3} with denominator at most 501. Come up with an upper bound for the smallest denominator of a ϵ -close rational approximation of any irrational number $\alpha > 0$. Your bound can have some dependence on α and should get smaller as α gets larger.

Hint: Use the orchard.