Linear Algebra 101

Prepared by Mark on April 20, 2023

Part 1: Notation and Terminology

Definition 1:

- \mathbb{R} is the set of all real numbers.
- \mathbb{R}^{+}is the set of positive real numbers. Zero is not positive.
- \mathbb{R}_{0}^{+}is the set of positive real numbers and zero.

Mathematicians are often inconsistent with their notation. Depending on the author, their mood, and the phase of the moon, \mathbb{R}^{+}may or may not include zero. We will use the definitions above.

Definition 2:

Consider two sets A and B. The set $A \times B$ consists of all tuples (a, b) where $a \in A$ and $b \in B$.
For example, $\{1,2,3\} \times\{\bigcirc, \star\}=\{(1, \diamond),(1, \star),(2, \diamond),(2, \star),(3, \varnothing),(3, \star)\}$
This is called the cartesian product.
You can think of this as placing the two sets "perpendicular" to one another:

Problem 1:

Let $A=\{0,1\} \times\{0,1\}$
Let $B=\{a, b\}$
What is $A \times B$?

Problem 2:

What is $\mathbb{R} \times \mathbb{R}$?
Hint: Use the "perpendicular" analogy

Definition 3:

\mathbb{R}^{n} is the set of n-tuples of real numbers.
In English, this means that an element of \mathbb{R}^{n} is a list of n real numbers:
Elements of \mathbb{R}^{2} look like (a, b), where $a, b \in \mathbb{R}$. Note: \mathbb{R}^{2} is pronounced "arrgh-two."
Elements of \mathbb{R}^{5} look like $\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right)$, where $a_{n} \in \mathbb{R}$.
\mathbb{R}^{1} and \mathbb{R} are identical.
Intuitively, \mathbb{R}^{2} forms a two-dimensional plane, and \mathbb{R}^{3} forms a three-dimensional space.
\mathbb{R}^{n} is hard to visualize when $n \geq 4$, but you are welcome to try.

Problem 3:

Convince yourself that $\mathbb{R} \times \mathbb{R}$ is \mathbb{R}^{2}.
What is $\mathbb{R}^{2} \times \mathbb{R}$?

Part 2: Vectors

Definition 4:

Elements of \mathbb{R}^{n} are often called vectors.
As you may already know, we have a few operations on vectors:

- Vector addition: $\left[a_{1}, a_{2}\right]+\left[b_{1}, b_{2}\right]=\left[a_{1}+b_{1}, a_{2}+b_{2}\right]$
- Scalar multiplication: $x \times\left[a_{1}, a_{2}\right]=\left[x a_{1}, x a_{2}\right]$.

The above examples are for \mathbb{R}^{2}, and each vector thus has two components.
These operations are similar for all other n.

Problem 4:

Compute the following or explain why you can't:

- $[1,2,3]-[1,3,4]$ Subtraction works just like addition.
- $4 \times[5,2,4]$
- $a+b$, where $a \in \mathbb{R}^{5}$ and $b \in \mathbb{R}^{7}$

Problem 5:

Consider $(2,-1)$ and $(3,1)$ in \mathbb{R}^{2}.
Can you develop geometric intuition for their sum and difference?

Definition 5: Euclidean Norm

A norm on \mathbb{R}^{n} is a map from \mathbb{R}^{n} to \mathbb{R}_{0}^{+}
Usually, one thinks of a norm as a way of mesuring "length" in a vector space.
The norm of a vector v is written $\|v\|$.
We usually use the Euclidean norm when we work in \mathbb{R}^{n}.
If $v \in \mathbb{R}^{n}$, the Euclidean norm is defined as follows:
If $v=\left[v_{1}, v_{2}, \ldots, v_{n}\right]$,

$$
\|v\|=\sqrt{v_{1}^{2}+v_{2}^{2}+\ldots+v_{n}^{2}}
$$

This is simply an application of the Pythagorean theorem.

Problem 6:

Compute the euclidean norm of

- $[2,3]$
- $[-2,1,-4,2]$

Problem 7:

Show that $a \cdot a$ is $\|a\|^{2}$.

Part 3: Dot Products

Definition 6:

We can also define the dot product of two vectors. ${ }^{1}$
The dot product maps two elements of \mathbb{R}^{n} to one element of \mathbb{R} :

$$
a \cdot b=\sum_{i=1}^{n} a_{i} b_{i}=a_{1} b_{1}+a_{2} b_{2}+\ldots+a_{n} b_{n}
$$

Problem 8:

Compute $[2,3,4,1] \cdot[2,4,10,12]$

Problem 9:

Show that the dot product is

- Commutative
- Distributive $a \cdot(b+c)=a \cdot b+a \cdot c$
- Homogenous: $x(a \cdot b)=x a \cdot b=a \cdot x b$ $x \in \mathbb{R}$, and a, b are vectors.
- Positive definite: $a \cdot a \geq 0$, with equality iff $a=0$
$a \in \mathbb{R}^{n}$, and 0 is the zero vector.

[^0]
Problem 10:

Say you have two vectors, a and b. Show that $a \cdot b=\|a\|\|b\| \cos (\alpha)$, where α is the angle between a and b.
Hint: What is c in terms of a and b ?
Hint: The law of cosines is $a^{2}+b^{2}-2 a b \cos (\alpha)=c^{2}$
Hint: The length of a is $\|a\|$

Problem 11:

If a and b are perpendicular, what must $a \cdot b$ be? Is the converse true?

Part 4: Matrices

Definition 7:

A matrix is a two-dimensional array of numbers:

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]
$$

The above matrix has two rows and three columns. It is thus a 2×3 matrix.
The order "first rows, then columns" is usually consistent in linear algebra.
If you look closely, you may also find it in the next definition.

Definition 8:

We can define the product of a matrix A and a vector v :

$$
A v=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{l}
1 a+2 b+3 c \\
4 a+5 b+6 c
\end{array}\right]
$$

Note that each element of the resulting 2×1 matrix is the dot product of a row of A with v :

$$
A v=\left[\begin{array}{l}
-r_{1}- \\
-r_{2}-
\end{array}\right]\left[\begin{array}{l}
\mid \\
v \\
\mid
\end{array}\right]=\left[\begin{array}{l}
r_{1} \cdot v \\
r_{2} \cdot v
\end{array}\right]
$$

Naturally, a vector can only be multiplied by a matrix if the number of rows in the vector equals the number of columns in the matrix.

Problem 12:

Compute the following:

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right]\left[\begin{array}{l}
5 \\
3
\end{array}\right]
$$

Problem 13:

Say you multiply a size- m vector v by an $m \times n$ matrix A.
What is the size of your result $A v$?

Definition 9:

We can also multiply a matrix by a matrix:

$$
A B=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{cc}
10 & 20 \\
100 & 200
\end{array}\right]=\left[\begin{array}{cc}
210 & 420 \\
430 & 860
\end{array}\right]
$$

Note each element of the resulting matrix is dot product of a row of A and a column of B :

$$
\begin{gathered}
A B=\left[\begin{array}{l}
-r_{1}- \\
-r_{2}-
\end{array}\right]\left[\begin{array}{cc}
\mid & \mid \\
v_{1} & v_{2} \\
\mid & \mid
\end{array}\right]=\left[\begin{array}{ll}
r_{1} \cdot v_{1} & r_{1} \cdot v_{2} \\
r_{2} \cdot v_{1} & r_{2} \cdot v_{2}
\end{array}\right] \\
{\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{cc}
10 & 20 \\
100
\end{array}\right]=\left[\begin{array}{cc}
210 & 420 \\
430 & 860
\end{array}\right]}
\end{gathered}
$$

Problem 14:

Compute the following matrix product.

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right]\left[\begin{array}{lll}
9 & 8 & 7 \\
6 & 5 & 4
\end{array}\right]
$$

Problem 15:

Compute the following matrix product or explain why you can't.

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]\left[\begin{array}{ll}
10 & 20 \\
30 & 40
\end{array}\right]
$$

Problem 16:

If A is an $m \times n$ matrix and B is a $p \times q$ matrix, when does the product $A B$ exist?

Problem 17:

Is matrix multiplication commutative?
Does $A B=B A$ for all A, B ?
You only need one counterexample to show this is false.

Definition 10:

Say we have a matrix A. The matrix A^{T}, pronounced "A-transpose", is created by turning rows of A into columns, and columns into rows:

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]^{T}=\left[\begin{array}{ll}
1 & 4 \\
2 & 5 \\
3 & 6
\end{array}\right]
$$

Problem 18:

Compute the following:

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{T}
$$

$$
\left[\begin{array}{l}
1 \\
3 \\
3 \\
7
\end{array}\right]^{T}
$$

$$
\left[\begin{array}{llll}
1 & 2 & 4 & 8
\end{array}\right]^{T}
$$

The "transpose" operator is often used to write column vectors in a compact way. Vertical arrays don't look good in horizontal text.

Problem 19:

Consider the vectors $a=[1,4,3]^{T}$ and $b=[9,1,4]^{T}$

- Compute the dot product $a \cdot b$.
- Can you redefine the dot product using matrix multiplication?

As you may have noticed, a vector is a special case of a matrix.

Problem 20:

A column vector is an $m \times 1$ matrix.
A row vector is a $1 \times m$ matrix.
We usually use column vectors. Why?
Hint: How does vector-matrix multiplication work?

Part 5: Bonus

Problem 21:

Show that the euclidean norm satisfies the triangle inequalty:

$$
\|x+y\| \leq\|x\|+\|y\|
$$

Problem 22:
Show that the eucidean norm satisfies the reverse triangle inequality:

$$
\|x-y\| \geq|\|x\|-\|y\||
$$

Problem 23:

Prove the Cauchy-Schwartz inequality:

$$
\|x \cdot y\| \leq\|x\|\|y\|
$$

[^0]: ${ }^{1}$ Bonus content. Feel free to skip.
 Formally, we would say that the dot product is a map from $\mathbb{R}^{n} \times \mathbb{R}^{n}$ to \mathbb{R}. Why is this reasonable?
 It's also worth noting that a function f from X to Y can be defined as a subset of $X \times Y$, where for all $x \in X$ there exists a unique $y \in Y$ so that $(x, y) \in f$. Try to make sense of this definition.

