
ORMC AMC 10/12 Training Week 4

Number Theory

April 23, 2023

1 Warm-Up

These problems should be a review of basic concepts, or concepts we have previously discussed.

1. Let k be an even number. Is it possible to write 1 as the sum of the reciprocals of k odd integers?

2. Let n be a positive integer. Prove that 32n + 1 is divisible by 2, but not by 4.

3. (ARML 2003) Find the largest divisor of 1001001001 that does not exceed 10000.

4. (HMMT 2002) If a positive integer multiple of 864 is chosen randomly, with each multiple having
the same probability of being chosen, what is the probability that it is divisible by 1944?

5. Determine the number of ordered pairs of positive integers (a, b) such that the least common multiple
of a and b is 23571113.

6. Prove that there are infinitely many primes of the form 4k − 1; that is, congruent to 3 modulo 4.
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2 The Chicken McNugget Theorem

(More formally known as the Frobenius Coin Theorem)

Theorem 1. (Frobenius Coin Theorem)
Given any two relatively prime positive integers m,n, the largest integer that cannot be written in the form
am+ bn for nonnegative integers a, b is mn−m− n.

2.1 Proof (Exercises)

Proof. Let N be an arbitrary positive integer.

1. Show that if (x1, y1) is a solution to xm+ yn = N , and m(x1 − x2) + n(y1 − y2) = 0, then (x2, y2) is
also a solution.

2. Show that if (x1, y1) and (x2, y2) are both solutions to xm+yn = N , then m(x1−x2)+n(y1−y2) = 0.

3. Let S = {0, 1, 2, . . . ,m− 1}. Show that there exists exactly 1 solution (xN , yN ) for xm+ yn = N such
that y ∈ S.

4. Show that xN < 0 in the previous problem if and only if there are no positive integers x, y which satisfy
xm+ yn = N .

5. Show that mn − m − n is the largest N such that there are no positive integers x, y which satisfy
xm+ yn = N . This value N is called the Frobenius Number of m and n.

For more than 3 values, i.e. (m,n, k) with gcd(m,n, k) = 1, the solution is much more complicated, and
was originally solved using continued fractions. There are no known explicit solutions for 4 values in general,
but there are some upper bounds.

As you will see in the following exercises, problems may not directly look like the Chicken McNugget
Problem, but if you can reframe the problem in such a way that it involves exactly two relatively prime
positive integers, then you can use the result we proved above.
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2.2 Examples

1. At McDonalds, you can buy McNuggets in packs of 9 or 20. What is the largest number of McNuggets
that you cannot buy in one order, with these packs?

2. (2015 AMC 10B #15) The town of Hamlet has 3 people for each horse, 4 sheep for each cow, and 3
ducks for each person. Which of the following could not possibly be the total number of people, horses,
sheep, cows, and ducks in Hamlet?

2.3 Exercises

1. (1994 AIME #11) Ninety-four bricks, each measuring 4′′ × 10′′ × 19′′, are to stacked one on top of
another to form a tower 94 bricks tall. Each brick can be oriented so it contributes 4′′ or 10′′ or 19′′ to
the total height of the tower. How many different tower heights can be achieved using all ninety-four
of the bricks?

2. (Corollary to Chicken McNugget Theorem) For any integer k, exactly one of k, mn−m−n− k
has no solution in xm + yn, where x, y are nonnegative integers. It follows that there are mn−m−n

2
positive integers with no nonnegative integer solutions in xm+ yn.

3. (2019 AIME #14) Find the sum of all positive integers n such that, given an unlimited supply of
stamps of denominations 5, n, and n+1 cents, 91 cents is the greatest postage that cannot be formed.

4. (India TST) On the real number line, paint red all points that correspond to integers of the form
81x+100y, where x and y are positive integers. Paint the remaining integer points blue. Find a point
P on the line such that, for every integer point T , the reflection of T with respect to P is an integer
point of a different colour than T .
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3 Diophantine Equations

The equation we dealt with above is a special case of a more general class of equations, called linear
diophantine equations. A linear diophantine equation is any equation of the form:

a1x1 + · · ·+ anxn = b,

where a1, . . . , an, b are fixed integers, and we focus only on solutions where all of the xi’s are integers as well.
Notice that with n = 2, and nonnegative xi’s, we have precisely the Chicken McNugget Problem.

Theorem 2. A linear diophantine equation is solvable if and only if gcd(a1, . . . , an) | b.

3.1 Proof (Exercises)

Proof. Let d = gcd(a1, . . . , an).

1. Show by a simple argument that if d ∤ b, then there are no solutions.

2. Note that if d | b, then we can WLOG consider only equations with gcd(a1, . . . , an) = 1. Show that
for n = 1, such an equation is always solvable.

3. Let n ≥ 2, and assume, for induction, that the theorem holds for n − 1. Let d′ = gcd(a1, . . . , an−1).
Show that if d′ = 1, then we have a solution where xn = 0.

4. WLOG, we may assume d′ > 1. Show that there exists an xn which solves the equation modulo d′.

Note that by the existence of such an xn, it follows inductively that the theorem holds for n, since

anxn ≡ b (mod d′) =⇒ b− anxn ≡ 0 (mod d′) =⇒ d′ | (b− anxn).

If you are familiar with Bezout’s Identity, note that it is the special case of this theorem, where n = 2.

For solving general Diophantine equations, remember the following:

• A common, powerful strategy for solving general Diophantine equations is to consider the equation
modulo m. The point is that if there are no solutions modulo m, then there will be no solutions at all.

• Usually, there will be only a few small solutions, if any. So, you can usually find the solutions by testing
some small values. The rest of your work will be to show that no other solutions exist for larger values.

• If there happens to be a large number of solutions, they will most often come in one or more regular
pattern(s)/families. So, you can use induction to generate the family of solutions, starting with any
smaller solutions that you find manually.
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3.2 Examples

1. Prove that the equation
(x+ 1)2 + (x+ 2)2 + · · ·+ (x+ 2001)2 = y2

is not solvable.

2. Find all pairs (p, q) of prime numbers such that

p3 − q5 = (p+ q)2

3.3 Exercises

1. Solve the equation
6x+ 10y − 15z = 1.

2. Prove that the equation x5 − y2 = 4 has no solutions in integers.

3. Show that there are no integers a, b, c for which a2 + b2 − 8c = 6.

4. Solve in the integers the Diophantine equation x4 − 6x2 + 1 = 7 · 2y.

5. Determine all triples (x, y, z) of integers satisfying the equation

3x+ 4y + 5z = 6.

6. Let n be a positive integer. Suppose that there are 666 ordered triples (x, y, z) of positive integers
satisfying the equation

x+ 8y + 8z = n.

Find the maximum value of n.
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4 Advanced Problems

(General Number Theory)

1. (China 2017) Let m ≥ n > 1 be integers. Let a1, a2, . . . , an be n distinct and relatively prime
numbers not exceeding m. Show that for any real x, there exists an i for which

||aix|| ≥
2

m(m+ 1)
||x||

where ||x|| denotes the distance between x and the nearest integer to x .

2. (IMO 2017) An ordered pair (x, y) of integers is a primitive point if the greatest common divisor of
x and y is 1. Given a finite set S of primitive points, prove that there exist a positive integer n and
integers a0, a1, . . . , an such that, for each (x, y) in S, we have:

a0x
n + a1x

n−1y + a2x
n−2y2 + · · ·+ an−1xy

n−1 + any
n = 1.

3. (Putnam 2022) Let p be a prime number greater than 5. Let f(p) denote the number of infinite
sequences a1, a2, a3, . . . such that an ∈ {1, 2, . . . , p− 1} and anan+2 ≡ 1 + an+1 (mod p) for all n ≥ 1.
Prove that f(p) is congruent to 0 or 2 (mod 5).

4. (USAMO 2023) Let n ≥ 3 be an integer. We say that an arrangement of the numbers 1, 2, · · · , n2 in
a n×n table is row-valid if the numbers in each row can be permuted to form an arithmetic progression,
and column-valid if the numbers in each column can be permuted to form an arithmetic progression. For
what values of n is it possible to transform any row-valid arrangement into a column-valid arrangement
by permuting the numbers in each row?
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