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1 Polynomial Division

Definition 1 A polynomial (over the real numbers) is an expression of the form anx
n + an−1x

n−1 + ...+
a1x+ a0, where an, ..., a0, called the coefficients, are real numbers.

Note that the term polynomial refers only to this expression, not an equation involving it. We can also define
polynomials over other number systems (such as the rational numbers, or the complex numbers), where the
coefficients are those kinds of numbers, in the same way. Finally, we’ll make one crucial assumption:

Problem 1 Explain why we can assume that, for a nonzero polynomial, the first coefficient an ̸= 0. (The
term anx

n is called the leading term of the polynomial.)

With that assumption, we define

Definition 2 The degree of a nonzero polynomial is the power of x in its leading term.

We’ll often write f(x) (or just f) as shorthand for a polynomial in the variable x, and the degree of f can
be abbreviated deg(f). So, for example, if f(x) = 3x5 +15x2 − 20, then deg(f) = 5. (The degree of the zero
polynomial is undefined, but it can also be convenient to think of it as −∞. Try to think about why as you
work through these next problems!)

In general, the degree of a polynomial gives us a rough idea of how big it is, the same way that the absolute
value of an integer does (for example). So, just like in the case of integers, we can divide polynomials:

Theorem 1 For any polynomials f, g where g is nonzero, there exist unique polynomials q and r such that

f = qg + r

and deg(r) < deg(g). q is called the quotient of the division, and r is the remainder.
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To prove Theorem 1, we use the division algorithm for polynomials. (Theorem 1 is itself called the polynomial
division algorithm, even though it’s not an algorithm, but we’ll use these terms interchangeably.) The
algorithm works similarly to long division for integers: as an example, let’s see how we would divide x3 +
3x2 + 5x− 4 by x− 1. Similarly to usual long division, we multiply the divisor by the most simple thing (a
monomial in this case) such that when we subtract the result, the leading terms of the polynomial cancel.
We then repeat until we get a quotient and a remainder, as illustrated below:

x2 + 4x+ 9

x− 1
)

x3 + 3x2 + 5x− 4
− x3 + x2

4x2 + 5x
− 4x2 + 4x

9x− 4
− 9x+ 9

5

In this case, we obtain a quotient of x2 + 4x+ 9 and a remainder of 5.

Problem 2 Perform the following divisions of polynomials over the real numbers. What is the quotient and
remainder of each?

• Divide x2 + 1 by x− 1

• Divide x3 − 5x− 2 by x+ 2.

• Divide x4 + 3x3 − 10x2 + 4x− 8 by x2 − x+ 1.
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Problem 3 Explain why this algorithm ”works” as a proof of Theorem 1 (for real polynomials, let’s say) -
that is, why is deg(r) < deg(g) and why are q and r unique?

Problem 4 (Bonus) Does your answer to the previous problem also work for other number systems, like the
rationals and complex numbers? Think about which feature of the reals we’ve been using.

2 Roots of Polynomials

Definition 3 A (rational, real, complex) root of a polynomial f is a (rational, real, complex, respectively)
number a that satisfies the equation f(a) = 0.

In general, the coefficients and root of a polynomial should be in the same number field for this to make
sense (of course, these examples are all complex numbers). For now, let’s examine some real roots.

Problem 5 Show that a is a root of f if and only if f is divisible by x − a (that is, that the remainder
when f is divided by x− a is zero).

Problem 6 Find the roots of the following polynomials.

• (x− 1)(x+ 2)

• (x+ 5)2(x− 18)6

• x3(x+ 1)(x− 1)2
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Roots are easiest to find in factored polynomials - factoring is hard in general, so we will only handle factored
forms for now. For the factored form of a polynomial, we define

Definition 4 If a is a root of f , its multiplicity is the number of times the factor (x − a) appears in the
factored form of f .

For example, in the polynomial (x − 1)2, the root 1 has multiplicity 2. So even though it has one root, it
will be useful to count the root 1 twice. In general, when we count roots a number of times equal to their
multiplicity, we say the roots are counted up to multiplicity.

Problem 7 For each example given in Problem 6, find the degree of the polynomial and the number of its
roots, counted up to multiplicity.

Unfortunately, for the case of polynomials in real numbers, some break the trend exhibited by these examples.

Problem 8 What is the degree of x2 + 1? How many real roots does it have, counted up to multiplicity?
How many complex roots does it have, counted up to multiplicity?

In the complex numbers, the trend we’ve seen so far does in fact hold for all polynomials; this is the content
of the famous Fundamental Theorem of Algebra:

Theorem 2 (Fundamental Theorem of Algebra) Every nonzero polynomial f in the complex numbers has
exactly deg(f) roots, counted up to multiplicity.

To prove this, we’ll first reduce it to a (slightly) simpler statement:

Problem 9 Show that the Fundamental Theorem of Algebra is equivalent to the statement that every non-
constant (degree at least 1) polynomial has a complex root. (Hint: One direction is trivial. For the other
direction, use Problem 4 - what is the degree of the quotient?)
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3 Finding a Complex Root

To finish the proof, it’s convenient to recall two different forms of complex numbers: the rectangular form
a+ bi and the polar form reiθ, which are related by the following diagram. (As a reminder, θ is the angle of
the complex number from the positive real axis of the complex plane.) r is in particular called the magnitude
of the complex number - if r is the magnitude of a complex number z, we denote that r = |z|.

0

a+ bi

a

b
r

θ

We’ll look at the graph of a polynomial. In the real case, this is easier because the domain and range are both
1-dimensional, but in the complex case they are 2-dimensional, so drawing the whole graph is impossible.
Instead, we’ll draw simple shapes, such as a circle, and look at the images of these shapes.

For example, consider the polynomial f(z) = z+ i. When drawing the image of the unit circle, we first trace
the unit circle. Generally, we’ll do so counterclockwise. As we can see from the diagram above, points on
the unit circle are of the form eiθ (since r = 1) and tracing counterclockwise means we take θ to go up from
0 to 2π (since there are 2π radians in a circle). Plugging that in, we get f(z) = i+ eiθ, still traced from 0 to
2π, so the image is still a counterclockwise circle, but is now centered at i instead of the origin. So graphing
f(z) = z + i can look like the following:
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Problem 10 Similarly graph the following polynomials:

• f(z) = z2, f(z) = z3, f(z) = z4, and so on. Do you see a pattern? How about f(z) = zn

• f(z) = 2z, f(z) = 3z, f(z) = 1/2z. In general, how about is f(z) = cz, for some positive real number
c?

• f(z) = −z.

• f(z) = z + z0, where z0 is any complex number.
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Problem 11 Now let’s consider the slightly more complicated case f(z) = z2 − z + 1.

• Sketch a graph similarly to Problem 10. (Hint: To do this by hand, try graphing z2 and −z separately
and adding the corresponding points together. It may also be helpful to use a tool like Desmos.)

• Now consider a circle of radius R = 5. How about R = 10? R = 100? Is there any pattern for large
R? (Hint: The image can be deformed into a picture we’ve seen before.)

• Now consider a circle of radius R = 0.2, or R = 0.1, or R = 0.000000001. Do the same as above -
what’s the pattern here?
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Problem 12 For a general polynomial f(z) = anz
n+...+a0, make your best guess as to what (approximately)

the image of a circle of very large radius is. How about a very small radius?(Challenge: Prove your guesses.)

We need one last result to prove the Fundamental Theorem of Algebra, which we won’t prove this week.

Theorem 3 For every polynomial f , there is a point z0 in the complex plane that minimizes |f(z)|.

Problem 13 Finish the proof of the Fundamental Theorem of Algebra, by showing that every nonconstant
polynomial has a complex root. (Hint: By making the right substitution, first show that we can assume the
point z0 from Theorem 3 is just the origin. Then look at the image of some particular circles, and use the
fact that |w| is the distance from w to the origin in the complex plane.)
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4 Bonus Section: Geometric Meaning of Multiplicity

Let’s return to our discussion of real roots. Viewing a polynomial in the real numbers as a function from the
reals to the reals, we can draw the entire graph in the plane, as we learned from algebra class. The following
graphs are of the functions x2 − 1, x2, and x2 + 1, respectively.

Problem 14 How many real roots does each polynomial have, and how many do they have counted up to
multiplicity? How can you tell the multiplicity of the roots just from the graph?

Problem 15 Show that the graph near a root of multiplicity n looks like the graph near the root 0 of some
axn if zoomed in close enough. (This can be seen on a website like Desmos.)
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Problem 16 Given that the following graph comes from a cubic (degree 3) polynomial, find the multiplicity
of this root.

Problem 17 Would the previous problem be answerable if we did not know the function was a cubic?

Finally, we’d like to apply a similar notion of multiplicity not just to graphs of functions, but to more general
geometric shapes. For instance, a circle is not the graph of any function (to see this, just see that it fails the
vertical line test), but it is still related to a polynomial - the unit circle in the plane is given by x2 + y2 = 1,
which is a polynomial (in two variables). We won’t formally study these this week, but our intuition from
graphs of polynomials does carry over.

Problem 18 In the following pictures including circles, try to guess at what the ”multiplicity” of each
intersection point would be.
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