In our first problem, we recall some concepts about real projective geometry. Classically, we do geometry in an affine space \mathbb{R}^n. However, as we will see throughout this worksheet, working with a projective space $\mathbb{P}_\mathbb{R}^n$ has some advantages.

The projective space $\mathbb{P}_\mathbb{R}^n$ consists of $(n+1)$-tuples $[x_0 : \cdots : x_n]$ where not all the entries x_i are equal to zero. Two points $[x_0 : \cdots : x_n]$ and $[y_0 : \cdots : y_n]$ are said to be equal in $\mathbb{P}_\mathbb{R}^n$ if there exists a constant $\lambda \neq 0$ for which $x_i = \lambda y_i$ for each i. For instance, in $\mathbb{P}_\mathbb{R}^2$ we have $[3 : 3 : 3] = [1 : 1 : 1]$. The number n is called the dimension of the real projective space.

In the first problem, we will determine whether points in projective spaces are equal or not.

Problem 1.0: Are the points $[0 : 1]$ and $[0 : 2]$ equal in the projective space $\mathbb{P}_\mathbb{R}^1$?
Are the points $[0 : 1]$ and $[1 : 1]$ equal in the projective space $\mathbb{P}_\mathbb{R}^1$?
Are the points $[1 : 2 : 3]$ and $[3 : 6 : 9]$ equal in the projective space $\mathbb{P}_\mathbb{R}^2$?

Solution 1.0:
Problem 1.1: How many points does the 0-dimensional projective space have? Meaning, how many points does \(\mathbb{P}^0_\mathbb{R} \) have? Consider the function:

\[
\phi: \mathbb{R}^1 \rightarrow \mathbb{P}^1_\mathbb{R} \quad \phi(x) := [x : 1].
\]

Is the function \(\phi \) one-to-one? Is the function \(\phi \) onto? What points does \(\phi \) miss?

Solution 1.1:
Problem 1.2: Consider the function:

\[\phi : \mathbb{R}^n \to \mathbb{P}_\mathbb{R}^n \quad \text{given by} \quad \phi(x_1, \ldots, x_n) = [x_1 : \cdots : x_n : 1]. \]

Is the function \(\phi \) one-to-one?
Is the function \(\phi \) onto?
If not, what points does \(\phi \) miss?

Solution 1.2:
In mathematics, we write
\[X = A \sqcup B, \]
if the set \(X \) is the disjoint union of \(A \) and \(B \). This means that every element of \(X \) lies either in \(A \) or \(B \) but no element of \(X \) lies in both \(A \) and \(B \). In symbols, we can write \(X = A \cup B \) and \(A \cap B = \emptyset \).

For instance, we can write
\[\mathbb{R} := \mathbb{R}^- \sqcup \{0\} \sqcup \mathbb{R}^+, \]
where \(\mathbb{R}^- \) denotes strictly negative numbers and \(\mathbb{R}^+ \) denotes strictly positive numbers. However, the equality
\[\{0, 1, 2\} = \{0, 1\} \sqcup \{0, 2\} \]
is not correct, as both sets contain zero. In this case, it is only correct to write
\[\{0, 1, 2\} = \{0, 1\} \cup \{0, 2\}. \]

Problem 1.3: From the previous problems, deduce that we can write
\[\mathbb{P}^n_{\mathbb{R}} = \mathbb{R}^n \sqcup \mathbb{P}^{n-1}_{\mathbb{R}}. \]
Iterating the previous equality, conclude that there is an equality:
\[\mathbb{P}^n_{\mathbb{R}} = \mathbb{R}^n \sqcup \mathbb{R}^{n-1} \sqcup \cdots \sqcup \mathbb{R}^1 \sqcup \mathbb{R}^0. \]
The points in \(\mathbb{P}^n_{\mathbb{R}} \) for which the last component \(x_n \) is zero, are called points at infinity.

Solution 1.3:
A projective line in $\mathbb{P}^2_\mathbb{R}$ is the set of points $[x_0 : x_1 : x_2]$ satisfying a linear equation
\[\lambda_0 x_0 + \lambda_1 x_1 + \lambda_2 x_2 = 0, \]
where the λ_i are real parameters.

As we discussed above, all the points in $\mathbb{P}^2_\mathbb{R}$ whose last coordinate is 1 can be considered as points in \mathbb{R}^2. The point $[x_0 : x_1 : 1]$ corresponds to $(x_0, x_1) \in \mathbb{R}^2$. The intersection of a line with \mathbb{R}^2 is called the affine part of the line. The intersection of the line with the line at infinity are called the points at infinity.

For instance, the line $x_0 + x_1 + x_2 = 0$, in $\mathbb{P}^2_\mathbb{R}$, has affine part $(t, t - 1)$ in \mathbb{R}^2 and the point $[1 : -1 : 0]$ at infinity.

Problem 1.4: For the following projective lines, find their affine parts and their points at infinity.

- The projective line $x_0 = 0$ in $\mathbb{P}^2_\mathbb{R}$.
- The projective line $x_0 = 1$ in $\mathbb{P}^2_\mathbb{R}$.
- The projective line $x_0 + 2x_1 + x_2 = 0$ in $\mathbb{P}^2_\mathbb{R}$.
- The projective line $x_2 = 0$ in $\mathbb{P}^2_\mathbb{R}$. This projective line is called the line at infinity as all its points are at infinity.

Solution 1.4:
Two projective lines in \mathbb{P}_R^2 are said to have an \textit{affine intersection point}, if they share a common point in \mathbb{R}^2. Otherwise, we say that the lines intersect at infinity.

Problem 1.5: For the following pairs of lines, decide whether they have an affine intersection point or they intersect at infinity. In any case, find the intersection point.

- The line $x_0 + x_1 + x_2 = 0$ and the line $x_0 + 2x_1 + x_2 = 0$.
- The line $x_0 - x_1 + x_2 = 0$ and the line $x_0 - x_1 + 2x_2 = 0$.
- The line $3x_0 - 2x_1 + 4x_2 = 0$ and the line $3x_0 - 2x_1 + 5x_2 = 0$.

Solution 1.5:
Problem 1.6: Show that two projective lines in \(\mathbb{P}_r^2 \) always intersect: either at an affine point or at infinity. Can two lines intersect both at infinity and at an affine point?

Solution 1.6:
Problem 1.7: Consider the projective line ℓ_1 given by the equation

$$x_0 + x_1 + x_2 = 0$$

in the projective space \mathbb{P}_R^2. Find all the projective lines ℓ_2 for which ℓ_1 and ℓ_2 intersect only at infinity.

Solution 1.7:
Three points in \mathbb{P}_R^2 are said to be *collinear* if they lie in a projective line. For instance, the points $[1 : -1 : 0], [3 : -4 : 1], \text{ and } [0 : 1 : -1]$ are distinct points in \mathbb{P}_R^2 that are collinear. Indeed, they all lie in the projective line $x_0 + x_1 + x_2 = 0$.

Problem 1.8: Let $(a_0, a_1), (b_0, b_1), (c_0, c_1)$ be three collinear points in \mathbb{R}^2. Show that the points $[a_0 : a_1 : 1], [b_0 : b_1 : 1], \text{ and } [c_0 : c_1 : 1]$ are collinear in \mathbb{P}_R^2.

Solution 1.8:
In \mathbb{R}^2, there are 4 possible ways that three lines can intersect, depending on whether the lines are parallel or not. This is described in the following picture:

\[
\begin{array}{c}
\times \\
\equiv \\
\neq \\
\triangle
\end{array}
\]

In \mathbb{P}_R^2 there are no parallel lines, so there are only two possibilities.

Problem 1.9: Show that three projective lines ℓ_1, ℓ_2, and ℓ_3 in \mathbb{P}_R^2 either satisfy:

- Their intersection is non-empty, i.e., $\ell_1 \cap \ell_2 \cap \ell_3 \neq \emptyset$, or
- the three lines form a triangle, i.e., $\ell_1 \cap \ell_2 = p, \ell_2 \cap \ell_3 = q$, and $\ell_1 \cap \ell_3 = r$ for three different points p, q, and r in the projective space.

For each of the previous situation, find explicit lines ℓ_1, ℓ_2, and ℓ_3. For each explicit choice of the lines, find all the intersection points.

Solution 1.9