OLGA RADKO MATH CIRCLE: ADVANCED 3

JOAQUÍN MORAGA

Spring Quarter - Worksheet 1: Projective Lines

In our first problem, we recall some concepts about real projective geometry. Classically, we do geometry in an affine space \mathbb{R}^{n}. However, as we will see throughout this worksheet, working with a projective space $\mathbb{P}_{\mathbb{R}}^{n}$ has some advantages.

The projective space $\mathbb{P}_{\mathbb{R}}^{n}$ consists of $(n+1)$-tuples

$$
\left[x_{0}: \cdots: x_{n}\right]
$$

where not all the entries x_{i} are equal to zero. Two points $\left[x_{0}: \cdots: x_{n}\right]$ and $\left[y_{0}: \cdots: y_{n}\right]$ are said to be equal in $\mathbb{P}_{\mathbb{R}}^{n}$ if there exists a constant $\lambda \neq 0$ for which $x_{i}=\lambda y_{i}$ for each i. For instance, in $\mathbb{P}_{\mathbb{R}}^{2}$ we have $[3: 3: 3]=[1: 1: 1]$. The number n is called the dimension of the real projective space.

In the first problem, we will determine whether points in projective spaces are equal or not.
Problem 1.0: Are the points $[0: 1]$ and $[0: 2]$ equal in the projective space $\mathbb{P}_{\mathbb{R}}^{1}$?
Are the points $[0: 1]$ and $[1: 1]$ equal in the projective space $\mathbb{P}_{\mathbb{R}}^{1}$?
Are the points $[1: 2: 3]$ and $[3: 6: 9]$ equal in the projective space $\mathbb{P}_{\mathbb{R}}^{2}$?

Solution 1.0:

Problem 1.1: How many points does the 0-dimensional projective space have?
Meaning, how many points does $\mathbb{P}_{\mathbb{R}}^{0}$ have?
Consider the function:

$$
\phi: \mathbb{R}^{1} \rightarrow \mathbb{P}_{\mathbb{R}}^{1} \quad \phi(x):=[x: 1] .
$$

Is the function ϕ one-to-one?
Is the function ϕ onto?
What points does ϕ miss?

Solution 1.1:

Problem 1.2: Consider the function:

$$
\phi: \mathbb{R}^{n} \rightarrow \mathbb{P}_{\mathbb{R}}^{n} \quad \text { given by } \quad \phi\left(x_{1}, \ldots, x_{n}\right)=\left[x_{1}: \cdots: x_{n}: 1\right]
$$

Is the function ϕ one-to-one?
Is the function ϕ onto?
If not, what points does ϕ miss?
Solution 1.2:

In mathematics, we write

$$
X=A \sqcup B
$$

if the set X is the disjoint union of A and B. This means that every element of X lies either in A or B but no element of X lies in both A and B. In symbols, we can write $X=A \cup B$ and $A \cap B=\emptyset$.

For instance, we can write

$$
\mathbb{R}:=\mathbb{R}^{-} \sqcup\{0\} \sqcup \mathbb{R}^{+},
$$

where \mathbb{R}^{-}denotes strictly negative numbers and \mathbb{R}^{+}denotes strictly positive numbers. However, the equality

$$
\{0,1,2\}=\{0,1\} \sqcup\{0,2\}
$$

is not correct, as both sets contain zero. In this case, it is only correct to write

$$
\{0,1,2\}=\{0,1\} \cup\{0,2\} .
$$

Problem 1.3: From the previous problems, deduce that we can write

$$
\mathbb{P}_{\mathbb{R}}^{n}=\mathbb{R}^{n} \sqcup \mathbb{P}_{\mathbb{R}}^{n-1}
$$

Iterating the previous equality, conclude that there is an equality:

$$
\mathbb{P}_{\mathbb{R}}^{n}=\mathbb{R}^{n} \sqcup \mathbb{R}^{n-1} \sqcup \cdots \sqcup \mathbb{R}^{1} \sqcup \mathbb{R}^{0}
$$

The points in $\mathbb{P}_{\mathbb{R}}^{n}$ for which the last component x_{n} is zero, are called points at infinity. Solution 1.3:

A projective line in $\mathbb{P}_{\mathbb{R}}^{2}$ is the set of points $\left[x_{0}: x_{1}: x_{2}\right]$ satisfying a linear equation

$$
\lambda_{0} x_{0}+\lambda_{1} x_{1}+\lambda_{2} x_{2}=0
$$

where the λ_{i} are real parameters.
As we discussed above, all the points in $\mathbb{P}_{\mathbb{R}}^{2}$ whose last coordinate is 1 can be considered as points in \mathbb{R}^{2}. The point $\left[x_{0}: x_{1}: 1\right]$ corresponds to $\left(x_{0}, x_{1}\right) \in \mathbb{R}^{2}$. The intersection of a line with \mathbb{R}^{2} is called the affine part of the line. The intersection of the line with the line at infinity are called the points at infinity.

For instance, the line

$$
x_{0}+x_{1}+x_{2}=0
$$

in $\mathbb{P}_{\mathbb{R}}^{2}$, has affine part $(t, t-1)$ in \mathbb{R}^{2} and the point $[1:-1: 0]$ at infinity.
Problem 1.4: For the following projective lines, find their affine parts and their points at infinity.

- The projective line $x_{0}=0$ in $\mathbb{P}_{\mathbb{R}}^{2}$.
- The projective line $x_{0}=1$ in $\mathbb{P}_{\mathbb{R}}^{2}$.
- The projective line $x_{0}+2 x_{1}+x_{2}=0$ in $\mathbb{P}_{\mathbb{R}}^{2}$.
- The projective line $x_{2}=0$ in $\mathbb{P}_{\mathbb{R}}^{2}$. This projective line is called the line at infinity as all its points are at infinity.

Solution 1.4:

Two projective lines in $\mathbb{P}_{\mathbb{R}}^{2}$ are said to have an affine intersection point, if they share a common point in \mathbb{R}^{2}. Otherwise, we say that the lines intersect at infinity.

Problem 1.5: For the following pairs of lines, decide whether they have an affine intersection point or they intersect at infinity. In any case, find the intersection point.

- The line $x_{0}+x_{1}+x_{2}=0$ and the line $x_{0}+2 x_{1}+x_{2}=0$.
- The line $x_{0}-x_{1}+x_{2}=0$ and the line $x_{0}-x_{1}+2 x_{2}=0$.
- The line $3 x_{0}-2 x_{1}+4 x_{2}=0$ and the line $3 x_{0}-2 x_{1}+5 x_{2}=0$.

Solution 1.5:

Problem 1.6: Show that two projective lines in $\mathbb{P}_{r} r^{2}$ always intersect: either at an affine point or at infinity. Can two lines intersect both at infinity and at an affine point?
Solution 1.6:

Problem 1.7: Consider the projective line ℓ_{1} given by the equation

$$
x_{0}+x_{1}+x_{2}=0
$$

in the projective space $\mathbb{P}_{\mathbb{R}}^{2}$. Find all the projective lines ℓ_{2} for which ℓ_{1} and ℓ_{2} intersect only af infinity.

Solution 1.7:

Three points in $\mathbb{P}_{\mathbb{R}}^{2}$ are said to be collinear if they lie in a projective line. For instance, the points $[1:-1: 0],[3:$ $-4: 1]$, and $[0: 1:-1]$ are distinct points in $\mathbb{P}_{\mathbb{R}}^{2}$ that are collinear. Indeed, they all line in the projective line $x_{0}+x_{1}+x_{2}=0$.

Problem 1.8: Let $\left(a_{0}, a_{1}\right),\left(b_{0}, b_{1}\right),\left(c_{0}, c_{1}\right)$ be three collinear points in \mathbb{R}^{2}. Show that the points $\left[a_{0}: a_{1}: 1\right],\left[b_{0}:\right.$ $\left.b_{1}: 1\right]$, and $\left[c_{0}: c_{1}: 1\right]$ are collinear in $\mathbb{P}_{\mathbb{R}}^{2}$.
Solution 1.8:

In \mathbb{R}^{2}, there are 4 possible ways that three lines can intersect, depending on whether the lines are parallel or not. This is described in the following picture:

In $\mathbb{P}_{\mathbb{R}}^{2}$ there are no parallel lines, so there are only two possibilities.
Problem 1.9: Show that three projective lines ℓ_{1}, ℓ_{2}, and ℓ_{3} in $\mathbb{P}_{\mathbb{R}}^{2}$ either satisfy:

- Their intersection is non-empty, i.e., $\ell_{1} \cap \ell_{2} \cap \ell_{3} \neq \emptyset$, or
- the three lines form a triangle, i.e., $\ell_{1} \cap \ell_{2}=p, \ell_{2} \cap \ell_{3}=q$, and $\ell_{1} \cap \ell_{3}=r$ for three different points p, q, and r in the projective space.
For each of the previous situation, find explicit lines ℓ_{1}, ℓ_{2}, and ℓ_{3}. For each explicit choice of the lines, find all the intersection points.
Solution 1.9

UCLA Mathematics Department, Box 951555, Los Angeles, CA 90095-1555, USA.
Email address: jmoraga@math.ucla.edu

