Turing Machines

Kevin Li

April 2023

1 Introduction

Today we are going to study one of the most commonly used models of computation: the Turing machine. This was invented by Alan Turing and looks something like the following:

	b	с	a	d	a	a	
<	3^{q_1}	>					

The row of squares is known as a **tape**. It is infinite in both directions, and each square is either blank or contains a symbol from a fixed finite set $\{s_1, \ldots, s_n\}$. We will denote a blank square with B. Below this tape is a moving pointer called the **reading head**. At any given time, it is *reading* the square above it, and is always in some state, q_i . There are finitely many states $\{q_1, \ldots, q_m\}$.

The machine is capable of three instructions: 1. If the machine is in state q_i and reading s_j , then the machine can erase the symbol s_j , write the symbol s_k , and change its state to q_l . This instruction is written as $q_i s_j s_k q_l$.

2. If the machine is in state q_i reading s_j , then the head can move one square right and change state to q_k . This instruction is written as $q_i s_j R q_k$.

3. If the machine is in state q_i reading s_j , then the head can move one square left and change state to q_k . This instruction is written as $q_i s_j L q_k$.

Definition 1 A Turing Machine Program for machine M is a finite list of instructions such that for any pair $q_i s_j$, there is at most one instruction of the form $q_i s_j \alpha q_k$. We will denote this program as P.

Definition 2 An *Initial State* for Turing machine program P is the starting tape for which the program P will run. Note this includes what symbols are on the tape, the location of the reading head, and the state it is in.

Example 1 Consider a Turing machine M with alphabet $\{1\}$ (remember, all alphabets 'contain' the blank symbol B). Let P be the program:

 $q_0 1Lq_0$ $q_0 B1q_1$ $q_1 1Rq_2$. Consider the initial state:

Then, the program will run as follows:

Initial state:

Notice that there are no instructions of the form $q_2 1\beta\gamma$.

Definition 3 If the Turing machine is running program P, instate q_i and reading symbol s_j , if there is no instruction of the form $q_i s_j \alpha q_l$, then we say the machine is in halting state.

Problem 1 Consider a Turing machine with alphabet $\{1\}$ and states $\{q_0, q_1, q_2\}$. Consider the following program:

 $q_0 1 R q_0$

 $q_0 B 1 q_1$

 $q_1 1 R q_2$

Show all steps of the computation of this program on initial state:

Problem 2 Is there a program for a Turing machine with alphabet $\{1\}$ which never reaches halting state on some initial state? You can choose what states you have.

Problem 3 Construct a Turing machine program with the alphabet $\{1\}$ (using any finite states you want including q_0) which writes 1 onto the first two blanks to the right of the initial reading head in initial state:

		•				
 1	1	1	1	1		

Does this program reach halting state for every tape that has at least 2 blanks to the right of the initial reading head? If yes, try to explain why. If not, try to write a program which does.

2 Turing Computable Function

We want to think of Turing machines as a computation method, similar to a computer. Let's try to formalize how Turing machines relate to certain functions in mathematics. For the purposes of this worksheet, $0 \in \mathbb{N}$.

Definition 4 A partial function $f : X \to Y$ is a function whose domain is a subset $D \subseteq X$ and its codomain is Y. In other words, a partial function f is a function which only produces an output on some (possibly all) input elements. For any $x \in X$, if $x \in D$ then we say f(x) converges, written $f(x) \downarrow$. Otherwise, we say f(x) diverges, written $f(x) \uparrow$.

Example 2 $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \sqrt{x}$ is a partial function, since is domain is $\{x \in \mathbb{R} : x \ge 0\}$.

Let 1 be in our alphabet. Let P be a Turing machine program. The partial function $f : \mathbb{N} \to \mathbb{N}$ is computed as follows:

To compute f(x), start with initial state

with x + 1 many 1's. Then, run program P. If this program halts, we say $f(x) \downarrow =$ the number of 1's in the halting state If this program does not halt, we say $f(x) \uparrow$.

Definition 5 We say a partial function $f : \mathbb{N} \to \mathbb{N}$ is **Turing computable** if there is a Turing machine and a program which computes it.

Problem 4 Show that the function f(x) = x + 2 is Turing computable.

Problem 5 Show that the function f(x) = x + n is Turing computable for each $n \in \mathbb{N}$.

Problem 6 Show that the function f(x) = n is Turing computable for each $n \in \mathbb{N}$ (i.e. show that constant functions are Turing computable).

Definition 6 We say a function $f : \mathbb{N}^2 \to \mathbb{N}$ is Turing computable if on input $(x, y) \in \mathbb{N}^2$, there is a Turing machine program which computes f(x, y) on the initial state

where the first string has x + 1 many 1's and the second string has y + 1 many 1's.

Problem 7 Show that the function f(x, y) = x + y is Turing computable.

Problem 8 Show that the functions $\pi_1^2(x, y) = x$ and $\pi_2^2(x, y) = y$ are Turing computable.

Problem 9 Revisit the program in Problem 1. What function does this program compute?

Problem 10 Choose one of the following: 1. Think of any function which you can calculate in your head. Try to write a Turing machine program which computes it. 2. Ask your instructors about 'The Halting Problem'.