ORMC AMC 10/12 Group
 Sequences \& Series

January 29, 2023

1 Warmup: Trig Review

Review of some formulas that we discussed previously:
In the triangle below, we can calculate the area as $\frac{1}{2} a \cdot h$, or we can use trigonometry to only involve side lengths and angles, instead of referencing the height directly:

So, for any two sides of a triangle (x, y), and the angle between them (Z), the area is $\frac{1}{2} x y \sin (Z)$. We can write this out for each pair of sides in the diagram above:

$$
K=\frac{1}{2} a b \sin (C)=\frac{1}{2} b c \sin (A)=\frac{1}{2} a c \sin (B)
$$

If we multiply every one of these expressions by $\frac{2}{a b c}$, we get the (extended) Law of Sines:

$$
\frac{2 K}{a b c}=\frac{\sin (C)}{c}=\frac{\sin (A)}{a}=\frac{\sin (B)}{b}
$$

Another thing we can try with this triangle diagram is applying the pythagorean theorem, since h creates two right triangles. We have:

$$
b^{2}=(C D)^{2}+h^{2}, \quad c^{2}=(a-C D)^{2}+h^{2}=a^{2}-2 a(C D)+(C D)^{2}+h^{2}
$$

Subtracting the first equation from the second to get eliminate $(C D)^{2}+h^{2}$, we get the $\boldsymbol{L a w}$ of Cosines:

$$
c^{2}-b^{2}=a^{2}-2 a(C D)=a^{2}-2 a b \cos (C) \Longrightarrow c^{2}=a^{2}+b^{2}-2 a b \cos (C)
$$

1.1 Exercises

1. In $\triangle A B C$, we have $A B=13, B C=14$, and $A C=15$. Point P lies on $B C$, and $A P \perp B C$. What is the length of $B P$?
2. In $\triangle A B C, \angle B=3 \angle C$. If $A B=10$ and $A C=15$, compute the length of $B C$.
3. (2012 AMC 12A \#16) Circle C_{1} has its center O lying on circle C_{2}. The two circles meet at X and Y. Point Z in the exterior of C_{1} lies on circle C_{2} and $X Z=13, O Z=11$, and $Y Z=7$. What is the radius of circle C_{1} ?
4. (2017 AMC 12B \#15) Let $A B C$ be an equilateral triangle. Extend side $\overline{A B}$ beyond B to a point B^{\prime} so that $B B^{\prime}=3 \cdot A B$. Similarly, extend side $\overline{B C}$ beyond C to a point C^{\prime} so that $C C^{\prime}=3 \cdot B C$, and extend side $\overline{C A}$ beyond A to a point A^{\prime} so that $A A^{\prime}=3 \cdot C A$. What is the ratio of the area of $\triangle A^{\prime} B^{\prime} C^{\prime}$ to the area of $\triangle A B C$?
5. (2022 AMC 10B $\# 20$) Let $A B C D$ be a rhombus with $\angle A D C=46^{\circ}$. Let E be the midpoint of $\overline{C D}$, and let F be the point on $\overline{B E}$ such that $\overline{A F}$ is perpendicular to $\overline{B E}$. What is the degree measure of $\angle B F C$?

2 Stewart's Theorem

Stewart's Theorem is a useful statement about the relationship between side lengths of a triangle and the length of of an arbitrary segment from one vertex of the triangle to an opposite side (such a segment is called a cevian). Consider the following diagram:

Letting $a=m+n$, Stewart's theorem states that these lengths satisfy:

$$
b^{2} m+c^{2} n=a m n+d^{2} a .
$$

The power of Stewart's theorem is that it allows us to compute side lengths in an arbitrary triangle, with an arbitrary cevian, without involving any of the angles!

We can prove this using Law of Cosines on the triangles created by segment $\overline{A D}$. Recall that $\cos (x)=-\cos \left(180^{\circ}-x\right)$. With this in mind, we want to use angles $\angle A D C$ and $\angle B D A$, so that the cosines will cancel out and leave us with just side lengths. For $\triangle B D A$ we have:

$$
m^{2}+d^{2}-c^{2}=2 m d \cos (\angle B D A) \Longrightarrow \cos (\angle B D A)=\frac{m^{2}+d^{2}-c^{2}}{2 m d}
$$

and for $\triangle C D A$ we have:

$$
\begin{aligned}
& n^{2}+d^{2}-b^{2}= 2 n d \cos (\angle C D A) \\
& \Longrightarrow \cos (\angle C D A)=\frac{n^{2}+d^{2}-b^{2}}{2 n d}, \\
& \Longrightarrow \frac{m^{2}+d^{2}-c^{2}}{2 m d}=-\frac{n^{2}+d^{2}-b^{2}}{2 n d} \Longrightarrow \frac{m^{2}+d^{2}-c^{2}}{m}=-\frac{n^{2}+d^{2}-b^{2}}{n} \\
& \Longrightarrow m^{2} n+d^{2} n-c^{2} n=-n^{2} m-d^{2} m+b^{2} m \\
& \Longrightarrow\left(m^{2} n+n^{2} m\right)+\left(d^{2} n+d^{2} m\right)=c^{2} n+b^{2} m \Longrightarrow m n a+d^{2} a=c^{2} n+b^{2} m .
\end{aligned}
$$

2.1 Examples

1. Two of the sides of a triangle have length 4 and 9 . The median drawn to the third side of this triangle has a length of 6 . Compute the length of the third side of this triangle.
2. (2022 AMC 10A \#23) Isosceles trapezoid $A B C D$ has parallel sides $\overline{A D}$ and $\overline{B C}$, with $B C<$ $A D$ and $A B=C D$. There is a point P in the plane such that $P A=1, P B=2, P C=3$, and $P D=4$. What is $\frac{B C}{A D}$?

2.2 Exercises

1. In $\triangle A B C, X$ is a point on $\overline{A B}$ such that $A X=2, B X=4$. If $A C=7$ and $B C=5$, compute $C X$.
2. (2013 AMC 12A \# 19) In $\triangle A B C, A B=86$, and $A C=97$. A circle with center A and radius $A B$ intersects $\overline{B C}$ at points B and X. Moreover $\overline{B X}$ and $\overline{C X}$ have integer lengths. What is $B C$?
3. (2002 AMC 12B $\#$ 23) In $\triangle A B C$, we have $A B=1$ and $A C=2$. Side $\overline{B C}$ and the median from A to $B C$ have the same length. What is $B C$?
4. (2003 AIME I \#7) Point B is on $\overline{A C}$ with $A B=9$ and $B C=21$. Point D is not on $\overline{A C}$ so that $A D=C D$, and $A D$ and $B D$ are integers. Let s be the sum of all possible perimeters of $\triangle A C D$. Find s.
5. (2013 AIME II \#13) In $\triangle A B C, A C=B C$, and point D is on $\overline{B C}$ so that $C D=3 \cdot B D$. Let E be the midpoint of $\overline{A D}$. Given that $C E=\sqrt{7}$ and $B E=3$, the area of $\triangle A B C$ can be expressed in the form $m \sqrt{n}$, where m and n are positive integers and n is not divisible by the square of any prime. Find $m+n$.

3 Mass Points

Mass Points is a technique used to solve for lengths in triangles (in general, polygons). The more general form of mass points is called barycentric coordinates, which some of you may be interested in, but is beyond the scope of the AMC 10/12.

Mass points involves systematically assigning "weights" to points in a diagram, using ratios of lengths. Specifically, when some point C divides a line segment $\overline{A B}, A$ and B may be assigned masses W_{A} and W_{B}, respectively. We want $\overline{A B}$ to be able to "balance" on point C, so the weights and segments would satisfy the equation: $\frac{W_{A}}{W_{B}}=\frac{B C}{A C} \Longleftrightarrow(A C) \cdot W_{A}=(B C) \cdot W_{B}$.

Consider the following diagram:

The way to systematically assign weights is as follows:

1. First, choose a central point for the entire figure to "balance" around. Usually, you will have a diagram with one or more cevians that intersect in 1 point, and you want this point of intersection to be the balancing point. In the diagram above, this point would be O.
2. You can assign a weight to any point in the diagram, without loss of generality
3. Deduce the appropriate weights for other points, following a few simple rules:

- Any cevian should balance on the central point (O).
- Any side of the triangle should balance on the point where a cevian intersects it.
- If a segment $\overline{A B}$ is "balanced" on some point C, then the weights W_{A}, W_{B} should satisfy the equation from above: $(A C) \cdot W_{A}=(B C) \cdot W_{B}$.
- If C is the balancing point of $\overline{A B}$, then $W_{A}+W_{B}=W_{C}$.

The key limitation of mass points is that any "balancing point" is unique. So, each time we use mass points, we can only have 1 central point where all the cevians intersect, and we can only consider 1 balancing point for each side of the triangle at a time.

The technique is best illustrated with some examples- see the next page.

3.1 Examples

1. $\triangle A B C$ has point D on $A B$, point E on $B C$, and point F on $A C . A E, C D$, and $B F$ intersect at point G. The ratio $A D: D B$ is $3: 5$ and the ratio $C E: E B$ is $8: 3$. Find the ratio of $F G: G B$ Solution:

By mass points, $F G: G B=W_{B}: W_{F}$. We may begin WLOG by assigning B a weight of 1 , since the segments whose ratios we know are $A B$ and $C B$. This means that $W_{A}=\frac{5}{3} W_{B}=\frac{5}{3}$ and $W_{C}=\frac{3}{8} W_{B}=\frac{3}{8}$. Since F balances A and C, we then have $W_{F}=\frac{5}{3}+\frac{3}{8}=\frac{40+9}{24}$. This gives us $\frac{W_{B}}{W_{F}}=\frac{1}{\frac{49}{24}}=\frac{24}{49}$.
2. Consider a triangle $A B C$ with its three medians drawn, with the intersection points being D, E, F, corresponding to $A B, B C$, and $A C$ respectively. Let the centroid be G. What are the ratios $A G: G E, B G: G F, C G: G D$?
Solution:

By the definition of a median, we know that D is the midpoint of $\overline{A B}, E$ is the midpoint of $\overline{B C}$, and F is the midpoint of $\overline{A C}$. In particular, this means that $W_{A}=W_{B}=W_{C}$, and $W_{D}=W_{E}=W_{F}=2 W_{A}$. So, $W_{E}=2 W_{A}, W_{F}=2 W_{B}$, and $W_{D}=2 W_{C}$. So, all of the ratios are $2: 1$.

3.2 Exercises

1. (2019 AMC $8 \# \mathbf{2 4}$) In triangle $\triangle A B C$, point D divides side $\overline{A C}$ so that $A D: D C=1: 2$. Let E be the midpoint of $\overline{B D}$ and let F be the point of intersection of line $\overline{B C}$ and line $\overline{A E}$. Given that the area of $\triangle A B C$ is 360, what is the area of $\triangle E B F ?$

2. (2013 AMC 10B \#16) In triangle $A B C$, medians $A D$ and $C E$ intersect at $P, P E=1.5$, $P D=2$, and $D E=2.5$. What is the area of $A E D C$?

3. (2004 AMC 10B $\# \mathbf{2 0})$ In $\triangle A B C$ points D and E lie on $B C$ and $A C$, respectively. If $A D$ and $B E$ intersect at T so that $\frac{A T}{D T}=3$ and $\frac{B T}{E T}=4$, what is $\frac{C D}{B D}$?

4. (2016 AMC 10A \#19) In rectangle $A B C D, A B=6$ and $B C=3$. Point E between B and C, and point F between E and C are such that $B E=E F=F C$. Segments $\overline{A E}$ and $\overline{A F}$ intersect $\overline{B D}$ at P and Q, respectively. The ratio $B P: P Q: Q D$ can be written as $r: s: t$ where the greatest common factor of r, s, and t is 1 . What is $r+s+t$?
5. (2016 AMC 12A \#12)In $\triangle A B C, A B=6, B C=7$, and $C A=8$. Point D lies on $\overline{B C}$, and $\overline{A D}$ bisects $\angle B A C$. Point E lies on $\overline{A C}$, and $\overline{B E}$ bisects $\angle A B C$. The bisectors intersect at F. What is the ratio $A F: F D$?

6. (1971 AHSME $\# \mathbf{2 6})$ In $\triangle A B C$, point F divides side $A C$ in the ratio 1:2. Let E be the point of intersection of side $B C$ and $A G$ where G is the midpoints of $B F$. What is $B E: E C$?

7. (2009 AIME I \#5) Triangle $A B C$ has $A C=450$ and $B C=300$. Points K and L are located on $\overline{A C}$ and $\overline{A B}$ respectively so that $A K=C K$, and $\overline{C L}$ is the angle bisector of angle C. Let P be the point of intersection of $\overline{B K}$ and $\overline{C L}$, and let M be the point on line $B K$ for which K is the midpoint of $\overline{P M}$. If $A M=180$, find $L P$.
8. (2011 AIME II \#4) In triangle $A B C, A B=20$ and $A C=11$. The angle bisector of $\angle A$ intersects $B C$ at point D, and point M is the midpoint of $A D$. Let P be the point of the intersection of $A C$ and $B M$. The ratio of $C P$ to $P A$ can be expressed in the form $\frac{m}{n}$, where m and n are relatively prime positive integers. Find $m+n$.
