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Problem 1 Warm up: think of some other situations where permutations
might be helpful (for example, shuffling a deck of cards). Talk with the stu-
dents next to you about how you might use permutations in these situations
and how you might write down the permutations involved.

Further improving notations

Let us take another look at the permutation µ.

µ =
(
3 2 4 1

)
The permutation does not shuffle the second element. Hence, writing it

is redundant. Knowing that the original set consists of four elements, we can
write the permutation down as

µ =
(
3 4 1

)
Since the second element does not appear in the formula, we know that

the permutation does not move it. This convention becomes very conve-
nient with larger permutations. For example, let us take another look at
Sam Loyd’s formulation of the 15 puzzle. Since we need to keep track of the
empty square, as well as of the numbered ones, let us consider it as the 16th
tile.

1 2 3 4

5 6 7 8

9 10 11 12

13 15 14
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The permutation(
1 2 3 4 5 6 7 8 9 10 11 12 13 15 14 16

)
switches the 14th and 15th elements only. Writing down the 14 elements it
does not move is a waste of time! In the new notations,(

1 2 3 4 5 6 7 8 9 10 11 12 13 15 14 16
)
=

(
15 14

)
.

Since all other elements are not mentioned, we know that the permutation
does not shuffle them.

Here is one more example. Let µ =
(
3 4 1

)
be a permutation of six

elements. Since the elements 2, 5, and 6 are not listed, µ keeps them in place.
So in fact, µ =

(
3 2 4 1 5 6

)
.
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Problem 2 The permutation ν =
(
3 1

)
acts on a set of three elements.

Write down its full version.

ν =
What is the order of ν?

Write down the short form of ν−10,000,831.

ν−10,000,831 =

Problem 3 The permutation δ =
(
3 5 7 1

)
acts on a set of seven ele-

ments. Write down its full version.

δ =
What is the order of δ?

Write down the short form of δ−10,000,000.

δ−10,000,000 =

A permutation that swaps two elements and doesn’t shuffle anything
else is called a transposition. For example, the permutation that switches
the order of the third and fifth element in a six-element set is

(
5 3

)
=(

1 2 5 4 3 6
)
.
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Problem 4 What is the inverse of the transposition
(
5 3

)
?(

5 3
)−1

=

Problem 5 What is the order of any transposition?

Any permutation can be realized as a product of transpositions. For
example, let us consider the permutation
σ =

(
3 1 4 2

)
from before. Applying the transposition

(
2 1

)
to the

original order of the elements gives us the following.(
1 2 3 4

)
−→

(
2 1 3 4

)
Let us apply the transposition

(
4 1

)
to the result.(

2 1 3 4
)
−→

(
4 1 3 2

)
Finally, applying the transposition

(
3 1

)
finishes the job.(

4 1 3 2
)
−→

(
3 1 4 2

)
Or more concisely,(

3 1 4 2
)
=

(
3 1

) (
4 1

) (
2 1

)
.

Problem 6 Realize the permutation
(
2 3 1

)
as a product of transposi-

tions.
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Problem 7 Write down the permutation µ that corresponds to the following
move of the 15 puzzle. Remember, we treat the empty square as the 16th tile!

1 2 3 4

5 6 7 8

9 10 11 12

13 15 14

1 2 3 4

5 6 7 8

9 10 11

1213 15 14

µ =

The problem continues on the next page.

Find the product µ ◦
(
15 14

)
and compare the answer to the order of

the squares on the second picture of the previous page.

µ ◦
(
15 14

)
=

Problem 8 Write down the permutation that corresponds to the following
move of the 15 puzzle. Remember, we treat the empty square as the 16th tile!
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1213 15 14

1 2 3 4

5 6 7 8

9 10 11

1213 15 14

Problem 9 Find the order of the permutation σ =
(
2 5 4 3 1

)
.
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Problem 10 Without doing any more computations, find the following for
the permutation σ =

(
2 5 4 3 1

)
from Problem 9.

σ−1 =

σ126 =

Parity of a permutation

If a permutation σ moves the element in the position i to the position
k, we write σ(i) = k. Let us consider the permutation σ from Problems 9
and 10 one more time. It moves the fifth element to the first position, so
σ(5) = 1. It moves the first element to the second position, so σ(1) = 2.

Problem 11 For the permutation σ from Problems 9 and 10, find the fol-
lowing.

σ(2) =

σ(3) =

σ(4) =
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If i < j, but σ(i) > σ(j), then the pair (i, j) is called an inversion
of the permutation σ. In other words, a inversion of a permutation is a
smaller number moved to the right of a larger number (or a larger num-
ber moved to the left of a smaller number). For example, the permutation
σ =

(
2 5 4 3 1

)
from Problems 9, 10, and 11 moves 5 to the first po-

sition, so (5, 1), (5, 4), (5, 3), and (5, 2) are all inversions of σ.

Note 1 Although the words “inverse” and “inversion” are very similar, the
notions of an inverse of a permutation and an inversion of a permutation are
very different! An inverse of a permutation σ is the permutation σ−1 that
undoes what the original permutation σ does. The inversion of a permutation
σ is a disorder the permutation σ creates.

Problem 12 Write down all other inversions of the permutation σ =
(
2 5 4 3 1

)
.

The sign of a permutation is defined according to the following formula.

sgn(σ) = (−1)N(σ) (1)

where N(σ) is the number of inversions of the permutation σ. For example,
the total number of inversions of the permutation σ from Problems 9, 10, 11,
and 12 is seven (check it!), so sgn(σ) = (−1)7 = −1.

Problem 13 What is the sign of the trivial permutation?

sgn(e) =
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Problem 14 Find the signs of the following permutations.

sgn
(
3 1 4 2

)
=

sgn
(
3 2 4 1

)
=

Problem 15 What is the sign of the permutation corresponding to the fol-
lowing configuration of the 15 puzzle? (Remember, the empty square is con-
sidered as the 16th tile.)

1 2 3 4

5 6 7 8

9 10 11

1213 15 14
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Recall that a transposition (ji) is a permutation that changes the posi-
tions of only two elements, i-th and j-th.

Theorem 1 The sign of any transposition is − 1.

Before giving Theorem 1 a formal proof, let us check a few cases.

Problem 16 What is the sign of the transposition σ = (52) acting on a set
of five elements?

sgn(σ) =

What is the sign of the transposition σ = (52) acting on a set of six ele-
ments?

sgn(σ) =

What is the sign of the transposition σ = (63) acting on a set of seven
elements?

sgn(σ) =

To prove Theorem 1, let us first observe that a transposition of two neigh-
bouring elements, called an adjacent transposition, always changes the num-
ber of inversions by one. Let us consider the transposition δ = (i + 1, i).
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All the elements except for the i+ 1-st that formed inversions with the i-th
element still form inversions with it when it moves to the i + 1-st position.
All the elements except for the i-th that formed inversions with the i+ 1-st
one keep doing so when the latter moves one position to the left. If the pair
(i, i + 1) formed an inversion, δ removes it. If the pair formed no inversion,
δ creates one.

The following Lemma finishes the proof of Theorem 1.

Lemma 1 Any transposition can be realized as a product of an odd number
of adjacent transpositions.

Proof — Consider the transposition (ji) where j > i+ 1. The following
product of j − i− 1 adjacent transpositions

(j − 1, j − 2) ◦ . . . ◦ (i+ 2, i+ 1) ◦ (i+ 1, i)

moves the i-th element to the j − 1-st position one step at a time. The
adjacent transposition

(j, j − 1)

swaps it with the j-th element. Finally, the following product of j − i − 1
adjacent transpositions

(i+ 1, i) ◦ (i+ 2, i+ 1) ◦ . . . ◦ (j − 1, j − 2)

moves the element that was originally in the j-th position to the i-th. This
way, any transposition (ji) where j > i+ 1 can be represented as a product
of 2(j − i− 1) + 1 adjacent transpositions. 2

Example 1
(52) = (32) ◦ (43) ◦ (54) ◦ (43) ◦ (32)

Problem 17 Represent the transposition (63) as a product of adjacent trans-
positions.

(63) =

Is the number of the adjacent transpositions odd or even?
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The permutations that have the sign 1 are called even. The permutations
that have the sign −1 are called odd. This way, all permutations are split
into two classes. A class of a permutation is called its parity. Theorem 1
proves that transpositions are odd permutations and that multiplying a per-
mutation by a transposition changes the parity of the former.

Problem 18

• Find the sign of the permutation µ =
(
3 4 1

)
acting on a set of five

elements.

sgn(µ) =
• Find the product (51) ◦ µ.

(51) ◦ µ =

• Find the sign of the permutation (51) ◦ µ.

sgn ((51) ◦ µ) =
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Note that Theorem 1 gives a different way to compute the sign of a per-
mutation. Instead of counting inversions, let us decompose the permutation
into a product of transpositions. Then the sign of the transposition is

(−1)the number of transpositions in the product. (2)

Various representations of a permutation as a product of transpositions can
have different length, but they always have the same parity.

Every move of the 15 puzzle is a transposition of a special type. You swap
a square numbered one through fifteen with the empty square (originally in
the 16th position). This observation alone is not enough to prove that the
15 puzzle configuration suggested by Sam Loyd has no solution.

1 2 3 4

5 6 7 8

9 10 11 12

13 15 14

Problem 19 Write down all the inversions of the permutation σ =
(
4 2 5 3 1

)
.

What is the sign of the permutation?

sgn(σ) =
13



Problem 20 What is the sign of the permutation corresponding to the fol-
lowing configuration of the 15 puzzle? (Remember, the empty square is con-
sidered as the 16th tile.)

1 2 3 4

5 6

7

8

9 10 11

1213 15 14
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Problem 21 Represent the transposition (41) as a product of adjacent trans-
positions.

(41) =

Problem 22 Represent the permutation σ =
(
4 2 5 3 1

)
from Prob-

lem 19 as a product of transpositions.

σ =

Use the formula
sgn(σ) = (−1)#t (3)

where #t is the number of transpositions in the product to find the sign of σ.
Compare your answer to that of Problem 19.

sgn(σ) =

Did you expect the answers to be the same? Why or why not?

There are two tools needed to prove that the 15 puzzle configuration sug-
gested by Sam Loyd has no solution.
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1 2 3 4

5 6 7 8

9 10 11 12

13 15 14

Taxicab geometry

Imagine that you take a taxicab to get from point A to point B in a city
with streets and avenues forming a rectangular pattern.

A

B

1st St.

2nd St.

3rd St.

4th St.

1st Ave. 3dr Ave. 5th Ave.

Similar to Euclidean geometry, there exists a shortest path. Unlike Eu-
clidean geometry, the shortest path is not unique. For example, the green
and red routes on the picture below are both shortest ways from A to B.
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A

B

1st St.

2nd St.

3rd St.

4th St.

1st Ave. 3dr Ave. 5th Ave.

Problem 23 On the picture above, draw a third shortest path from A to B.

The point A lies at the intersection of the 1st Ave. and the 4th St. Let
us write this fact down as follows.

A = (1, 4)

B lies at the intersection of the 5th Ave. and the 2nd St.

B = (5, 2)

Let a be the distance between two neighbouring avenues and let s be the
distance between two neighbouring streets. No matter what shortest path
the cab driver chooses, he needs to drive 4 blocks East and 2 blocks South.

dtc(A,B) = 4a+ 2s

Problem 24 Find the Euclidean distance dE(A,B) between the points A and
B.
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dE(A,B) =

Without doing any computations, put the correct sign, >, <, or =, between
the distances below. Explain your choice.

dE(A,B) dtc(A,B)
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Problem 25 For the grid below, a = s = 1.

x

y

1

1 A

B

C

Find the following taxicab distances.

dtc(A,B) =

dtc(A,C) =

dtc(B,C) =

If we use the taxicab distance instead of the Euclidean one, would the triangle
inequality hold for the triangle ABC?
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For any two points A = (x1, y1) and B = (x2, y2) in the coordinate plane,
let us define the taxicab distance between them as follows.

dtc(A,B) = |x1 − x2|+ |y1 − y2| (4)

Problem 26 Find the taxicab distance between the points
A = (−2, 7) and B = (3,−5).

dtc(A,B) =

Problem 27 The taxicab distance between the points A and B is zero.

dtc(A,B) = 0

Can the points be different? Why or why not?

Note that the taxicab distance shares some basic properties with the
Euclidean one. The distance from A to B equals the distance from B to A.

dtc(A,B) = dtc(B,A) dE(A,B) = dE(B,A)

In both cases, the distance between two points is zero if and only if the
points coincide.

dtc(A,B) = 0 ⇔ A = B ⇔ dE(A,B) = 0

The distance between two different points is always positive.

A ̸= B ⇒ dtc(A,B) > 0 and dE(A,B) > 0

We have observed one difference between the distances in Problem 25.
There, dtc(A,C) = dtc(A,B) + dtc(B,C). For the Euclidean distance, this
means that the point B lies on the straight line AC between the points A
and C, quite obviously not necessarily the case for the taxicab distance.
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Problem 28 On the grid below, mark all the points that have the taxicab
distance 6 from the point O.

O

Problem 29 Give the definition of a circle of radius R centred at the point
O in the space below.

Was the figure constructed in Problem 28 a circle? Why or why not?
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Problem 30 Find the taxicab distance from the current position of the empty
square to the lower-right corner of the 15 puzzle.

1 2 3 4

5 6

7

8

9 10 11

1213 15 14
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Finally, we have all the tools we need to prove that Sam Loyd’s configu-
ration is unsolvable.

Let P be a function that assigns each configuration C of the 15 puzzle one
of the two values, either zero or one. Let us set P(C) = 0 if the the sum of the
inversions of C plus the taxicab distance from its empty square position to
the lower-right corner of the puzzle is an even number. Let us set P(C) = 1
otherwise. For example, let us take another look at the configuration C we
have considered in Problem 30.

1 2 3 4

5 6

7

8

9 10 11

1213 15 14

The number of inversions of this configuration is 16. The taxicab dis-
tance from the empty square of the configuration to the lower-right corner is
3. The sum, 16 + 3 = 19, is an odd number, so P(C) = 1.

Let us call a configuration C of the 15 puzzle even, if P(C) = 0 and let us
call it odd otherwise. This way, all the configurations of the puzzle are split
into two classes, even and odd.

Problem 31 Is the following configuration
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1 2 3 4

5 6

7

8

9 10 11

1213 15 14

even or odd? Try to answer this question without doing too many calcula-
tions. Hint: compare this configuration to that on page 23.

The following theorem answers the solvability question that has opened
this mini-course.

Theorem 2 Odd configurations of the 15 puzzle are not solvable.

Indeed, Sam Loyd’s configuration C
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1 2 3 4

5 6 7 8

9 10 11 12

13 15 14

has only one inversion, (15, 14). The taxicab distance from the empty square
position of the configuration to the lower-right corner is zero. Hence, P(C) =
1 + 0 = 1. The configuration is odd and thus, according to Theorem 2, has
no solution.

Proof of Theorem 2 — Each move of the 15 puzzle is a transposition that
swaps a square numbered 1 through 15 with the empty square. According
to Theorem 1, a transposition always changes the number of inversions of a
permutation by an odd number.

Any move of the 15 puzzle changes the taxicab distance from the current
empty square position to the lower-right corner by one. Hence, the sum of
the changes of the number of the inversions and of the taxicab distance in
consideration is always an even number.

The winning configuration of the 15 puzzle, the one corresponding to the
trivial permutation of the sixteen element, is even. According to the above,
it cannot be obtained from an odd configuration. 2

Theorem 3 Any even configuration of the 15 puzzle is solvable.

Theorem 3 is not hard to prove using mathematical induction. We are
not going to do it at the moment. The following theorem is much harder to
prove.
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Theorem 4 Lengths of the optimal solutions of the 15 puzzle range from 0
to 80 single-tile moves.

Review session

Problem 32

• What is the number of inversions of the permutation corresponding to the
following configuration of the 15 puzzle?
(Remember, the empty square is considered as the 16th tile.)

1 2 3 4

5 6

7

8

9 10 11

1213 15 14

# of inversions =
• What is the taxicab distance from the current position of the empty square
to the lower-right corner of the puzzle?

dtc =

• What is the value P(C) of the invariant P for the configuration C above?
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P(C) =
• Is the above configuration C of the 15 puzzle solvable? Why or why not?

Problem 33 Without doing any extensive computations, decide whether the
following configuration of the 15 puzzle is solvable. Hint: compare this con-
figuration to the one on page 26 (the problem continues to the next page).

1 2 3 4

5 6

7

8

9 10

11

12

13 15 14

Explain your decision.

27



Problem 34 Without doing any extensive computations, decide whether the
following configuration of the 15 puzzle is solvable. Hint: compare it to the
winning configuration.

12 3 4

5 6 7 8

9 10 11 12

13 15 14

Explain your decision.
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Problem 35 Find the products δ ◦ σ and σ ◦ δ of the following two permu-
tations.

σ =
(
3 2 4 1

)
δ =

(
4 3 1 2

)

δ ◦ σ =
( )

σ ◦ δ =
( )

Do the permutations σ and δ commute?

Problem 36 The order of the permutation σ is 4. Find the following.

σ444(7) =

Problem 37 For the transposition σ = (52), find the following.

σ−1 =
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σ2014 =

sgn
(
σ2015

)
=

Problem 38 Find the order of the permutation σ =
(
5 6 1 2 3 4

)
.

The order of σ =

Without doing any additional computations, find the following.

σ−2 =
( )

Problem 39 Represent the transposition (85) as a product of adjacent trans-
positions.

(85) =

30



Problem 40

• Write down the full form of the permutation µ =
(
5 7 3

)
acting on

a set of nine elements.

µ = ( )

• Find the sign of µ.

sgn(µ) =

• Find µ−1 and write it down in the short form.

µ−1 = ( )
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Problem 41

• On the grid below, draw a point B such that
dtc(A,B) > dE(A,B).

• On the grid below, draw a point C such that
dtc(A,C) = dE(A,C).

• On the grid below, draw a point D such that
dtc(A,D) < dE(A,D). Is it possible? Why or why not?

x

y

1

1 A

Problem 42 Find the taxicab distance between the points
A = (p, q) and B = (x, y).
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dtc(A,B) =

Find the taxicab distance between the points C = (−3.3, 5.2) and D =
(−2.7,−7.8).

dtc(C,D) =

Problem 43 For the configuration of the 15 puzzle below, find the taxicab
distance between the squares 6 and 11.

1 2 3 4

5 6

7

8

9 10 11

1213 15 14

dtc(6, 11) =
Problem 44

• What is the number of inversions of the permutation corresponding to the
following configuration of the 15 puzzle?
(Remember, the empty square is considered as the 16th tile.)
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2 3 4

5 6

7

8

9 10 11

1213 15 14

# of inversions =

• What is the taxicab distance from the current position of the empty square
to the lower-right corner of the puzzle?

dtc =

• What is the value P(C) of the invariant P for the configuration C above?

P(C) =

• Is the above configuration C of the 15 puzzle solvable? Why or why not?
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