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Vector Spaces Over Fields

Up to this point, we have investigated the algebraic properties of numbers.
In particular, number systems that have all of the properties we like are called
fields. One way we can use fields to model the real world is to use vectors.

The arrow and coordinate representation of vectors

In your life-long journey studying the beauty of mathematics, you will have to
reference physical or online resources such as textbooks and videos. One of our
favorite math YouTubers is the channel 3Blue1Brown by Grant Sanderson.
We will spend the beginning of this lesson watching his video:

Vectors | Chapter 1, Essence of linear algebra
https://www.youtube.com/watch?v=fNk_zzaMoSs

We will watch this video in parts, supplementing it with some computational
problems. As Grant tends to say, his videos are best understood when you
“pause and ponder” often.

Watch 0:00 to 1:25 for vector interpretations

We learned the physics perspective of vectors last school year and used it to
prove some geometry facts! Let’s see if we can jog our memory.

Definition 1. A vector in the Euclidean plane is a directed segment or arrow.
In particular, a vector has a length and a direction.

A

B

−→v −→v =
−→
AB

For the vector −→v =
−→
AB, point A is called the initial point and point B is

called the terminal point.
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Definition 2. Two vectors, −→v =
−→
AB and −→w =

−−→
CD are defined to be equal if

the quadrilateral ABDC is a parallelogram.

A

B

−→v

C

D

−→w

In other words, two vectors −→v ,−→w are considered the same if you can move
−→v so that its initial and terminal points lie on top of the initial and terminal
points of −→w . This shows that the vectors have the same direction and length,
even though they start at different points. In this case, we write −→v = −→w .

Definition 3. A vector whose initial and terminal points coincide is called
the zero vector and is written

−→
0 . The zero vector has zero length and hence

points in no direction.

Definition 4. Let −→v be a vector in the Euclidean plane and let t > 0 be a
real number. Then we can define t−→v with the same initial point as −→v , points
in the same direction as −→v , but has t times the length of v. For example:

−→v

2−→v

For t < 0, we can define t−→v with the same initial point as −→v , points in the
opposite direction as −→v , but has t times the length of v. For example:

−→v

−2−→v

Finally, we define 0−→v =
−→
0 for any vector −→v .
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Definition 5. Let −→v ,−→w be vectors in the Euclidean plane. We define the
addition of −→v and −→w as follows. Move −→w so that the initial point of −→w
coincides with the terminal point of −→v . The vector originating at the initial
point of −→v and terminating at the terminal point of −→w is the sum −→v +−→w .

−→v

−→w

−→v +−→w

Okay, that’s a lot of definitions although they are hopefully familiar and
geometrically obvious to you. Before moving on with the video, let’s recall
two usages of vectors in physics.

Physical forces, such as the force of gravity or the electric force that pulls
together two objects having a different electric charge and pushes away two
objects having the same electric charge, are vectors in 3D. The direction of
a vector shows the direction in which the corresponding force is acting. The
length of the vector shows the strength of the force.

Problem 1. On the picture below, draw the vectors of the gravitational pull
the Earth exerts on you and on your Math Circle leader.

Earth

centre

Oleg

Me

Problem 2. Assuming that Oleg is twice as heavy as you are, how do you
show it by means of the gravitational pull vectors on the above picture?
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Watch 1:25 to 4:36 for vector coordinates

The video has identified the first very important tool for us: identifying the
vector arrow definition with the coordinate definition. We should emphasize
that, if you want to model a vector with numbers, then you have to make
sure that every vector you use starts at the same point: origin.

Problem 3. Fill in the coordinates of the vectors depicted on the plane below.
Each grid line is one unit apart and the vectors all start at the origin.

−→u

−→v

−→w

−→x

−→u =


 −→v =


 −→w =


 −→x =




Problem 4. Fill in the coordinates of the vectors depicted on the plane below.
Each grid line is one unit apart and the vectors all start at the origin.

−→u
−→v

−→w

−→x

−→u =


 −→v =


 −→w =


 −→x =
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Watch 4:36 to 8:10 for vector addition and scaling

We can interpret vector addition in coordinates very easily!

Problem 5. Fill in the coordinates of the vectors −→u ,−→v depicted on the plane
below. Each grid line is one unit apart and the vectors all start at the origin.
Then compute the coordinates of 2−→u +−→v and draw it on the grid.

−→u
−→v

−→u =


−→v =


 2−→u +−→v =




Problem 6. Fill in the coordinates of the vectors −→u ,−→v depicted on the plane
below. Each grid line is one unit apart and the vectors all start at the origin.
Then compute the coordinates of −1

3
−→u + 2−→v and draw it on the grid.

−→u

−→v

−→u =


−→v =


 −1

3
−→u + 2−→v =
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The 2-dimensional vector space over R

Overall, the identification of vectors with coordinates allows us to easily con-
struct the set of all vectors in the plane.

Definition 6. A 2-dimensional real vector is a pair of two real numbers u1, u2
written as [

u1
u2

]
.

We define the 2-dimensional vector space over R to be the set of all 2-
dimensional real vectors, which we denote by R2. We define the binary oper-
ation of addition + on R2 as[

u1
u2

]
+

[
v1
v2

]
=

[
u1 + v1
u2 + v2

]
.

We define the binary operation of scalar multiplication · on R and R2 as

t ·

[
u1
u2

]
=

[
tu1
tu2

]
.

In this context, we typically call the real number t a scalar. Note that we
usually drop the symbol · and simply write

t

[
u1
u2

]
=

[
tu1
tu2

]
when the context is clear.

Remark 1. When mathematicians say the “Euclidean plane”, they are often
actually referring to R2. This is because each vector in R2 identifies a unique
point on the 2-dimensional plane, namely the terminal point of the arrow
associated with the coordinate representation of the vector.

We know from the YouTube video that Definition 6 can be identified with the
physic’s arrow definition of vectors. The benefit of using coordinates instead
of arrows is that it lets us prove many facts that would be very difficult to
prove geometrically with arrows. Indeed, last year we learned that R2 satisfies
the following axioms which can be very easily proved using coordinates. Use
the algebraic properties of R and don’t over think these proofs.
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Axiom 1 (Closure of vector addition). For vectors −→u ,−→v in R2, we know that
−→u +−→v is also in R2.

Problem 7. Prove that vector addition in R2 is closed.

Axiom 2 (Associativity of vector addition). For vectors −→u ,−→v ,−→w in R2, we
know that −→u + (−→v + −→w ) = (−→u + −→v ) + −→w . This lets us ignore parentheses
when adding.

Problem 8. Prove that vector addition in R2 is associative.

Axiom 3 (Commutativity of vector addition). For vectors −→u ,−→v in R2, we
know that −→u +−→v = −→v +−→u .

Problem 9. Prove that vector addition in R2 is commutative.

Axiom 4 (Identity of vector addition). There is a vector −→a in R2 such that,
for all vectors −→u in R2, we have −→a + −→u = −→u + −→a = −→u . We call −→a the
additive identity of R2.

Problem 10. Which vector in R2 is −→a ? Why is this the only possible additive
identity of R2?
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Axiom 5 (Inverse of vector addition). For a vector −→u in R2, there is a
corresponding vector −→v such that −→v + −→u = −→u + −→v = −→a where −→a is the
additive identity of R2. We call −→v the additive inverse of −→u .

Problem 11. Consider a vector

−→u =

[
u1
u2

]

in R2. What is the additive inverse of −→u ? Can you write the additive inverse
in terms of scalar multiplication? Why is there only one possible additive
inverse of −→u ?

Axiom 6 (Closure of scalar multiplication). For a real number t and a vector
−→u in R2, we know that t · −→u is also in R2.

Problem 12. Prove that scalar multiplication on R2 is closed.

Axiom 7 (Identity of scalar multiplication). There is a real number m such
that m · −→u = −→u for any vector −→u in R2.

Problem 13. Which real number is m? Why is this the only possible choice
for m?
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Axiom 8 (Associativity of scalar multiplication). For real numbers t, s, we
have that (t · s) · −→u = t · (s · −→u ) for any vector −→u in R2.

Problem 14. Prove that scalar multiplication on R2 is associative.

Axiom 9 (Distributivity across scalar addition). For real numbers t, s and a
vector −→u in R2, we know that (t+ s) · −→u = (t · −→u ) + (s · −→u ).

Problem 15. Prove that scalar multiplication on R2 distributes across scalar
addition in R.

Axiom 10 (Distributivity across vector addition). For a real number t and
vectors −→u · −→v in R2, we know that t · (−→u +−→v ) = (t · −→u ) + (t · −→v ).

Problem 16. Prove that scalar multiplication on R2 distributes across vector
addition in R2.

Remark 2. Note that we do not multiply two vectors in R2 together. Instead,
we can only scale a vector, which is multiplying that vector by a real number.
The reason comes from physics intuition, as forces in the real world do not
multiply but rather add together. You may correctly argue “since when has the
real world stopped mathematicians”, and you’d be right. It is simply a question
of mathematical modeling; ask your instructor or Google about “algebras”!
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General vector spaces

Wow, those proofs were super simple! They all only rely on the twelve al-
gebraic axioms that the real numbers satisfy. In other words, they all hold
true because R is a field. This begs the question, what is special about R and
two dimensions? As you may guess, nothing! This allows us to generalize to
abstract vector spaces while maintaining the same ten axioms we’d like.

Definition 7. Let d ≥ 1 be an integer and let F be a field with addition +
and multiplication ·. A d-dimensional F-vector is a tuple of d-many numbers
u1, . . . , ud in F written as u1...

ud

 .

We define the d-dimensional vector space over F to be the set of all d-dimensional
F-vectors, which we denote by Fd. We define the binary operation of addition
+ on Fd as u1...

ud

+

v1...
vd

 =

u1 + v1
...

ud + vd

 .

We define the binary operation of scalar multiplication · on F and Fd as

t ·

u1...
ud

 =

tu1...
tud

 ,

for t in F. In this context, we typically call t a scalar. Note that we usually
drop the symbol · and simply write

t

u1...
ud

 =

tu1...
tud


when the context is clear.

Remark 3. Since F is a field, the proofs of Axiom 1 through Axiom 10 still
hold true when replacing R2 with Fd everywhere. This is awesome!
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R2 is of course an example of Definition 7 for the case of d = 2 and F = R.
Since we know that R2 models the Euclidean 2-dimensional plane, we may
ask: what other kinds of geometric spaces can vector spaces model?

Example 1. Consider the case of d = 1 and F = R in Definition 7. R1 is
the set of all 1-dimensional real vectors[

x
]

for x in R. One clearly sees that R1 is simply equal to R with the numbers
just written in-between brackets. We know then that R1 = R models a 1-
dimensional line, which is the standard number line that we use every day.

Example 2. Consider the case of d = 3 and F = R in Definition 7. R3 is the
set of all 3-dimensional real vectors which models 3-dimensional Euclidean
space, as seen in this screenshot from the YouTube video (with colors inverted
to save printer ink).
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Example 3. Consider the case of d = 2 and F = Z3 in Definition 7. (Z3)
2

is the set of all 2-dimensional Z3-vectors which we can geometrically describe
as the following lattice.

0

1

2

0 1 2

When you add two vectors together, i.e move on this lattice, you wrap around
like in an old video game. One way to understand this visually is to extend the
lattice as we’ve done below. Wherever you land in a sub-lattice corresponds
to positions in the original (Z3)

2 black sub-lattice.

0 1 2
0

1

2

0 1 2
0

1

2

0 1 2
0

1

2

0 1 2
0

1

2

−→u
−→v

−→u +3
−→v

For example, when you add −→u ,−→v as though they are vectors in R2, you obtain
the dashed green vector. This corresponds to the vector −→u +3

−→v in the original
(Z3)

2 black sub-lattice. Ask your instructors to draw some more examples!

Problem 17. Can you express this wrapping in terms of addition modulo 3?
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These examples give a glimpse into the modeling power of vector spaces. Us-
ing R as the field, we can model the standard one, two, and three-dimensional
spaces but we can also meaningfully work in higher dimensions even though
we cannot imagine or see higher dimensions. Using modular fields such as
Z3,Z5, or Z7, we can also work with d-dimensional spaces that wrap around
themselves. Let’s finish this handout with some computational problems to
get familiar with vector spaces.

Problem 18. Evaluate the following vector sums and scalings in R3.

√
2

 1

−
√
2

0

−


√
2
2
1

 =


 1

2

7.11.1
−1

+ 3
2

 7.2
1.2
−0.9

 =




Problem 19. Evaluate the following vector sums and scalings in R5.

√
2


1

−
√
2

0
2

1/
√
2

−


√
2
2
1√
8
0

 =



 1
2


7.1
1.1
−1
4
8

+ 3
2


7.2
1.2
−0.9

1
3
7
3

 =




Problem 20. Fill in the coordinates of the vectors −→u ,−→v in (Z3)
2 depicted

on the lattice below. Then compute the coordinates of 2−→u +3
−→v in (Z3)

2 and
draw the result on the lattice.

0

1

2

0 1 2

−→u

−→v

−→u =


−→v =


 2−→u +3

−→v =
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Problem 21. Fill in the coordinates of the vectors −→u ,−→v in (Z3)
2 depicted

on the lattice below. Then compute the coordinates of 2−→u +3 2
−→v in (Z3)

2 and
draw the result on the lattice.

0

1

2

0 1 2

−→u

−→v

−→u =


−→v =


 2−→u +3 2

−→v =




Problem 22. Fill in the coordinates of the vectors −→u ,−→v in (Z5)
2 depicted

on the lattice below. Then compute the coordinates of 4−→u +5 2
−→v in (Z5)

2 and
draw the result on the lattice.

0

1

2

3

4

0 1 2 3 4

−→u

−→v

−→u =


−→v =


 4−→u +5 2

−→v =
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Problem 23. Fill in the coordinates of the vectors −→u ,−→v in (Z5)
2 depicted

on the lattice below. Then compute the coordinates of −→u +5 3
−→v in (Z5)

2 and
draw the result on the lattice.

0

1

2

3

4

0 1 2 3 4

−→u −→v

−→u =


−→v =


−→u +5 3

−→v =




Problem 24. Evaluate the following vector sums and scalings in (Z7)
5.

6


2
3
4
5
6

+7 3


0
1
2
3
4

 =



 4


0
1
2
3
5

+7 2


0
4
2
3
4

 =
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