ORMC AMC 10/12 Group
 Complex Numbers

February 5, 2023

1 Basic Properties

With just the real numbers, equations such as $x^{2}=-1$ or $x^{2}=y$ for some negative value of y do not have solutions. In order to obtain a solution, we introduce the symbol i, which is a number satisfying $i^{2}=-1$.
A complex number is a number of the form $z=a+b i$, where a, b are real numbers. The real part is defined as $a=\operatorname{Re}(z)$ and the imaginary part as $b=\operatorname{Im}(z)$.

We add two complex numbers by summing the real and imaginary parts separately:

- Addition:

$$
(a+b i)+(c+d i)=(a+c)+(b+d) i
$$

We multiply together two complex numbers by using the distributive property:

- Multiplication:

$$
(a+b i)(c+d i)=(a c-b d)+(a d+b c) i
$$

1.1 Complex Conjugate and Inverses

The complex conjugate of z is denoted by \bar{z}. If $z=a+b i$, then $\bar{z}=a-b i$. The magnitude of a complex number z is denoted by $|z|$ and given by $|z|^{2}=z \bar{z}=a^{2}+b^{2}$. This is also the distance from z to the origin. Using these two properties, we can define the inverse and division as follows:

- Inverse:

$$
\begin{aligned}
(a+b i)^{-1} & =\frac{1}{a+b i} \\
& =\frac{a-b i}{(a+b i)(a-b i)} \\
& =\frac{a-b i}{a^{2}+b^{2}}
\end{aligned}
$$

- Division:

$$
\begin{aligned}
\frac{a+b i}{c+d i} & =\frac{(a+b i)(c-d i)}{(c+d i)(c-d i)} \\
& =\frac{(a c+b d)+(-a d+b c) i}{c^{2}+d^{2}}
\end{aligned}
$$

1.2 Polar Coordinates

Recall that any point in the 2D-plane, $P=(a, b)$, can be represented in polar coordinates as $P=$ $r(\cos \varphi, \sin \varphi)$. Similarly, any complex number $z=a+b i$ can be represented in polar coordinates as $z=r(\cos \varphi+i \sin \varphi)$ where

$$
\begin{gathered}
r=|z|=\sqrt{a^{2}+b^{2}} \\
\varphi=\arctan \frac{b}{a} .
\end{gathered}
$$

This gives us a way of describing any complex number in terms of its magnitude and angle.

1.3 Examples

1. Let z be a complex number that satisfies $z+6 i=i z$. Find z.
2. Show that for all complex numbers $z, z \bar{z}$ and $z+\bar{z}$ are real numbers.
3. Find the complex number z such that $\frac{z}{1+z}=-1+z$.

1.4 Exercises

1. A function f is defined by $f(x)=i \bar{z}$. How many values of z satisfy both $|z|=5$ and $f(z)=z$?
2. For what value of n is $i+2 i^{2}+3 i^{3}+\cdots+n i^{n}=48+49 i$?
3. Find c if a, b, c are positive integers which satisfy $c=(a+b i)^{3}-107 i$.

2 De Moivre's Theorem

De Moivre's Theorem is a formula for calculating powers of complex numbers. We start with some basic observations. Given some complex number $z=r(\cos \varphi+i \sin \varphi)$, when we try squaring it we get

$$
\begin{aligned}
z^{2} & =(r(\cos \varphi+i \sin \varphi))^{2} \\
& =r^{2}(\cos \varphi+i \sin \varphi)^{2} \\
& =r^{2}\left(\left(\cos ^{2} \varphi-\sin ^{2} \varphi\right)+2 i(\cos \varphi \sin \varphi)\right. \\
& =r^{2}(\cos (2 \varphi)+\sin (2 \varphi))
\end{aligned}
$$

This motivates the conjecture that raising a complex number to the n-th power is equivalent to raising its magnitude to the n-th power and multiplying its angle by n. In other words, we claim that

$$
(r(\cos \varphi+i \sin \varphi))^{n}=r^{n} \cos (n \varphi)+i \sin (n \varphi)
$$

Proof: We proceed with induction. Fix φ and define

$$
P(n):=(\cos \varphi+i \sin \varphi)^{n}=\cos (n \varphi)+i \sin (n \varphi)
$$

$P(1)$ is true since $\cos \varphi+i \sin \varphi=\cos (1 \cdot \varphi)+i \sin (1 \cdot \varphi)$. Assume $P(n)$. Then

$$
\begin{aligned}
(\cos \varphi+i \sin \varphi)^{n+1} & =(\cos \varphi+i \sin \varphi)^{n}(\cos \varphi+i \sin \varphi) \\
& =(\cos (n \varphi)+i \sin (n \varphi))(\cos \varphi+i \sin \varphi) \\
& =(\cos (n \varphi) \cos \varphi-\sin (n \varphi) \sin \varphi)+i(\cos (n \varphi) \sin \varphi+\sin (n \varphi) \cos (\varphi)) \\
& =\cos (n \varphi+\varphi)+i \sin (n \varphi+\varphi) \\
& =\cos ((n+1) \varphi)+i \sin ((n+1) \varphi)
\end{aligned}
$$

Thus $P(n) \Longrightarrow P(n+1)$, so $P(n)$ holds for all $n \geq 1$.

2.1 Euler's Formula

Euler's formula provides a fundamental relationship between trigonometric functions and the complex exponential function e^{x}. Given some complex number z, suppose that its magnitude is r and its argument is φ. Then Euler's formula states that $z=r(\cos \varphi+i \sin \varphi)=r e^{i \varphi}$.

Euler's formula gives us an alternative proof to De Moivre's Theorem since

$$
\left(e^{i \varphi}\right)^{n}=e^{i n \varphi}=\cos (n \varphi)+i \sin (n \varphi)
$$

2.2 Examples

1. Using De Moivre's Theorem, find formulas for $\cos 2 x$ and $\cos 3 x$ in terms of $\cos x$.
2. (2019 AMC 12B \#17) How many nonzero complex numbers z have the property that $0, z$, and z^{3}, when represented by points in the complex plane, are the three distinct vertices of an equilateral triangle?

2.3 Exercises

1. (2000 AIME II \# 9) Given that z is a complex number such that $z+\frac{1}{z}=2 \cos 3^{\circ}$, find the least integer that is greater than $z^{2000}+\frac{1}{z^{2000}}$.
2. (2019 AMC 12A \#21) Let

$$
z=\frac{1+i}{\sqrt{2}}
$$

What is

$$
\left(z^{1^{2}}+z^{2^{2}}+z^{3^{2}}+\cdots+z^{12^{2}}\right) \cdot\left(\frac{1}{z^{1^{2}}}+\frac{1}{z^{2^{2}}}+\frac{1}{z^{3^{2}}}+\cdots+\frac{1}{z^{12^{2}}}\right) ?
$$

3. (2022 AMC 12A \#22) Let c be a real number, and let z_{1} and z_{2} be the two complex numbers satisfying the equation $z^{2}-c z+10=0$. Points $z_{1}, z_{2}, \frac{1}{z_{1}}$, and $\frac{1}{z_{2}}$ are the vertices of (convex) quadrilateral \mathcal{Q} in the complex plane. When the area of \mathcal{Q} obtains its maximum possible value, what is the value of c ?
4. (2002 AIME I \#12) Let $F(z)=\frac{z+i}{z-i}$ for all complex numbers $z \neq i$, and let $z_{n}=F\left(z_{n-1}\right)$ for all positive integers n. Given that $z_{0}=\frac{1}{137}+i$ and $z_{2002}=a+b i$, where a and b are real numbers, find $a+b$.

3 Roots of Unity

Roots of unity are special complex numbers that, when raised to some integer power, equal 1. For all $n \in \mathbb{N}$, the n-th roots of unity are the n roots of the equation

$$
x^{n}=1
$$

Since $\left|x^{n}\right|=1$, all roots of unity have a magnitude of 1 . This means that they lie on a unit circle centered at the origin of the complex plane. In fact, we will later show that for any n, the n-th roots of unity lie spaced equally on the unit circle.

Figure 1: $n^{t h}$ roots of unity on \mathbb{C}-plane
Proof: Fix $n \in \mathbb{N}$, and let $w=e^{i 2 \pi / n}$. We will show that the roots of the equation $x^{n}=1$ are $1, w, w^{2}, \ldots, w^{n-1}$. For all $k \in\{0,1, \ldots, n-1\}$, we have that

$$
\begin{aligned}
\left(w^{k}\right)^{n} & =\left(\left(e^{i 2 \pi / n}\right)^{k}\right)^{n} \\
& =\left(\left(e^{i 2 \pi / n}\right)^{n}\right)^{k} \\
& =\left(e^{i 2 \pi}\right)^{k} \\
& =1
\end{aligned}
$$

Thus, for all k, w^{k} is a solution to $x^{n}=1$, and collectively they are the n-th roots of unity. Since consecutive terms differ by an angle of $2 \pi / n$, they are spaced equally around the unit circle.

3.1 Examples

1. An equilateral triangle has its centroid located at the origin and a vertex at $(-1,0)$. What are the coordinates of the other two vertices?
2. There are 24 different complex numbers z such that $z^{24}=1$. For how many of these is z^{6} a real number?

3.2 Exercises

1. (2017 AMC 12B \#12) What is the sum of the roots of $z^{12}=64$ that have a positive real part?
2. (2012 AIME I \#6) The complex numbers z and w satisfy $z^{13}=w, w^{11}=z$, and the imaginary part of z is $\sin \frac{m \pi}{n}$, for relatively prime positive integers m and n with $m<n$. Find n.
3. (2018 AIME I \#6) Let N be the number of complex numbers z with the property that $|z|=1$ and $z^{6!}-z^{5!}$ is a real number. Find the remainder when N is divided by 1000 .
4. (2021 AMC 12A \#22) Suppose that the roots of the polynomial $P(x)=x^{3}+a x^{2}+b x+c$ are $\cos \frac{2 \pi}{7}, \cos \frac{4 \pi}{7}$, and $\cos \frac{6 \pi}{7}$, where angles are in radians. What is $a b c$?
