ORMC AMC 10/12 Group Complex Numbers

February 5, 2023

1 Basic Properties

With just the real numbers, equations such as $x^2 = -1$ or $x^2 = y$ for some negative value of y do not have solutions. In order to obtain a solution, we introduce the symbol *i*, which is a number satisfying $i^2 = -1$.

A complex number is a number of the form z = a + bi, where a, b are real numbers. The real part is defined as a = Re(z) and the imaginary part as b = Im(z).

We add two complex numbers by summing the real and imaginary parts separately:

• Addition:

$$(a+bi) + (c+di) = (a+c) + (b+d)i$$

We multiply together two complex numbers by using the distributive property:

• Multiplication:

$$(a+bi)(c+di) = (ac-bd) + (ad+bc)i$$

1.1 Complex Conjugate and Inverses

The **complex conjugate** of z is denoted by \overline{z} . If z = a + bi, then $\overline{z} = a - bi$. The **magnitude** of a complex number z is denoted by |z| and given by $|z|^2 = z\overline{z} = a^2 + b^2$. This is also the distance from z to the origin. Using these two properties, we can define the inverse and division as follows:

• Inverse:

$$(a+bi)^{-1} = \frac{1}{a+bi}$$
$$= \frac{a-bi}{(a+bi)(a-bi)}$$
$$= \frac{a-bi}{a^2+b^2}$$

• Division:

$$\frac{a+bi}{c+di} = \frac{(a+bi)(c-di)}{(c+di)(c-di)}$$
$$= \frac{(ac+bd) + (-ad+bc)i}{c^2+d^2}$$

1.2 Polar Coordinates

Recall that any point in the 2D-plane, P = (a, b), can be represented in polar coordinates as $P = r(\cos \varphi, \sin \varphi)$. Similarly, any complex number z = a + bi can be represented in polar coordinates as $z = r(\cos \varphi + i \sin \varphi)$ where

$$r = |z| = \sqrt{a^2 + b^2}$$
$$\varphi = \arctan \frac{b}{a}.$$

This gives us a way of describing any complex number in terms of its magnitude and angle.

1.3 Examples

- 1. Let z be a complex number that satisfies z + 6i = iz. Find z.
- 2. Show that for all complex numbers z, $z\overline{z}$ and $z + \overline{z}$ are real numbers.

3. Find the complex number z such that $\frac{z}{1+z} = -1 + z$.

1.4 Exercises

1. A function f is defined by $f(x) = i\overline{z}$. How many values of z satisfy both |z| = 5 and f(z) = z?

2. For what value of *n* is $i + 2i^2 + 3i^3 + \dots + ni^n = 48 + 49i$?

3. Find c if a, b, c are positive integers which satisfy $c = (a + bi)^3 - 107i$.

2 De Moivre's Theorem

De Moivre's Theorem is a formula for calculating powers of complex numbers. We start with some basic observations. Given some complex number $z = r(\cos \varphi + i \sin \varphi)$, when we try squaring it we get

$$z^{2} = (r(\cos\varphi + i\sin\varphi))^{2}$$

= $r^{2}(\cos\varphi + i\sin\varphi)^{2}$
= $r^{2}((\cos^{2}\varphi - \sin^{2}\varphi) + 2i(\cos\varphi\sin\varphi))$
= $r^{2}(\cos(2\varphi) + \sin(2\varphi)).$

This motivates the conjecture that raising a complex number to the n-th power is equivalent to raising its magnitude to the n-th power and multiplying its angle by n. In other words, we claim that

 $(r(\cos\varphi + i\sin\varphi))^n = r^n \cos(n\varphi) + i\sin(n\varphi).$

Proof: We proceed with induction. Fix φ and define

$$P(n) := (\cos \varphi + i \sin \varphi)^n = \cos(n\varphi) + i \sin(n\varphi)$$

P(1) is true since $\cos \varphi + i \sin \varphi = \cos(1 \cdot \varphi) + i \sin(1 \cdot \varphi)$. Assume P(n). Then

$$\begin{aligned} (\cos\varphi + i\sin\varphi)^{n+1} &= (\cos\varphi + i\sin\varphi)^n (\cos\varphi + i\sin\varphi) \\ &= (\cos(n\varphi) + i\sin(n\varphi))(\cos\varphi + i\sin\varphi) \\ &= (\cos(n\varphi)\cos\varphi - \sin(n\varphi)\sin\varphi) + i(\cos(n\varphi)\sin\varphi + \sin(n\varphi)\cos(\varphi)) \\ &= \cos(n\varphi + \varphi) + i\sin(n\varphi + \varphi) \\ &= \cos((n+1)\varphi) + i\sin((n+1)\varphi). \end{aligned}$$

Thus $P(n) \implies P(n+1)$, so P(n) holds for all $n \ge 1$.

2.1 Euler's Formula

Euler's formula provides a fundamental relationship between trigonometric functions and the complex exponential function e^x . Given some complex number z, suppose that its magnitude is r and its argument is φ . Then Euler's formula states that $z = r(\cos \varphi + i \sin \varphi) = re^{i\varphi}$.

Euler's formula gives us an alternative proof to De Moivre's Theorem since

 $(e^{i\varphi})^n = e^{in\varphi} = \cos(n\varphi) + i\sin(n\varphi).$

2.2 Examples

- 1. Using De Moivre's Theorem, find formulas for $\cos 2x$ and $\cos 3x$ in terms of $\cos x$.
- 2. (2019 AMC 12B #17) How many nonzero complex numbers z have the property that 0, z, and z^3 , when represented by points in the complex plane, are the three distinct vertices of an equilateral triangle?

2.3 Exercises

- 1. (2000 AIME II # 9) Given that z is a complex number such that $z + \frac{1}{z} = 2\cos 3^{\circ}$, find the least integer that is greater than $z^{2000} + \frac{1}{z^{2000}}$.
- 2. (2019 AMC 12A #21) Let

$$z = \frac{1+i}{\sqrt{2}}.$$

What is

$$\left(z^{1^{2}}+z^{2^{2}}+z^{3^{2}}+\dots+z^{12^{2}}\right)\cdot\left(\frac{1}{z^{1^{2}}}+\frac{1}{z^{2^{2}}}+\frac{1}{z^{3^{2}}}+\dots+\frac{1}{z^{12^{2}}}\right)?$$

- 3. (2022 AMC 12A #22) Let c be a real number, and let z_1 and z_2 be the two complex numbers satisfying the equation $z^2 cz + 10 = 0$. Points z_1 , z_2 , $\frac{1}{z_1}$, and $\frac{1}{z_2}$ are the vertices of (convex) quadrilateral Q in the complex plane. When the area of Q obtains its maximum possible value, what is the value of c?
- 4. (2002 AIME I #12) Let $F(z) = \frac{z+i}{z-i}$ for all complex numbers $z \neq i$, and let $z_n = F(z_{n-1})$ for all positive integers n. Given that $z_0 = \frac{1}{137} + i$ and $z_{2002} = a + bi$, where a and b are real numbers, find a + b.

3 Roots of Unity

Roots of unity are special complex numbers that, when raised to some integer power, equal 1. For all $n \in \mathbb{N}$, the *n*-th roots of unity are the *n* roots of the equation

$$x^n = 1.$$

Since $|x^n| = 1$, all roots of unity have a magnitude of 1. This means that they lie on a unit circle centered at the origin of the complex plane. In fact, we will later show that for any n, the *n*-th roots of unity lie spaced equally on the unit circle.

Figure 1: n^{th} roots of unity on \mathbb{C} -plane

Proof: Fix $n \in \mathbb{N}$, and let $w = e^{i2\pi/n}$. We will show that the roots of the equation $x^n = 1$ are $1, w, w^2, \ldots, w^{n-1}$. For all $k \in \{0, 1, \ldots, n-1\}$, we have that

$$(w^k)^n = ((e^{i2\pi/n})^k)^n$$

= $((e^{i2\pi/n})^n)^k$
= $(e^{i2\pi})^k$
= 1.

Thus, for all k, w^k is a solution to $x^n = 1$, and collectively they are the *n*-th roots of unity. Since consecutive terms differ by an angle of $2\pi/n$, they are spaced equally around the unit circle.

3.1 Examples

- 1. An equilateral triangle has its centroid located at the origin and a vertex at (-1, 0). What are the coordinates of the other two vertices?
- 2. There are 24 different complex numbers z such that $z^{24} = 1$. For how many of these is z^6 a real number?

3.2 Exercises

- 1. (2017 AMC 12B #12) What is the sum of the roots of $z^{12} = 64$ that have a positive real part?
- 2. (2012 AIME I #6) The complex numbers z and w satisfy $z^{13} = w$, $w^{11} = z$, and the imaginary part of z is $\sin \frac{m\pi}{n}$, for relatively prime positive integers m and n with m < n. Find n.
- 3. (2018 AIME I #6) Let N be the number of complex numbers z with the property that |z| = 1 and $z^{6!} z^{5!}$ is a real number. Find the remainder when N is divided by 1000.
- 4. (2021 AMC 12A #22) Suppose that the roots of the polynomial $P(x) = x^3 + ax^2 + bx + c$ are $\cos \frac{2\pi}{7}$, $\cos \frac{4\pi}{7}$, and $\cos \frac{6\pi}{7}$, where angles are in radians. What is *abc*?