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1 Non-Euclidean Geometries

Euclid’s Elements, often considered the first mathematical treatise, begins with axioms that are used to
prove theorems that are familiar to us about shapes in the plane. One of Euclid’s axioms was as follows.
Although Euclid himself stated it differently, it is equivalent to the following formulation:

Definition 1 The parallel postulate states that given any line L and any point P not on L, there exists
a unique line through P parallel to L.

Euclidean geometry describes the plane, which can be expressed as the coordinate plane R2 - that is, ordered
pairs of real numbers.

Problem 1 Show that the coordinate plane R2 satisfies the parallel postulate. (Hint: Write lines in point-
slope form. When are they parallel?)

Solution: First, if a line is vertical, it is of the point x = a. Any point not on x = a has x-coordinate b
different from a, and there is a unique vertical line through that point (namely, x = b). Now if a line is not
vertical, it can be written as y = mx + b. If any other line has slope n ̸= m, we can solve the equation
mx+ b = nx+ c for x, so the two lines must intersect and cannot be parallel, so given any point (x0, y0) not
on y = mx+ b there is a unique line, namely y − y0 = m(x− x0), parallel to y = mx+ b.

When studying non-Euclidean geometry, while we could negate any of Euclid’s axioms, the most interesting
examples occur when we negate the parallel postulate. The negation of ”there exists a unique” is ”there
does not exist or there exists more than one”, so we have two options for replacement axioms:

Definition 2 The two alternative parallel postulates are:

• No two lines are parallel.

• Given any line L and point P not lying on L, there are at least two lines through P parallel to L.

This week we will study one particular example satisfying the second of these.
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2 Circle Inversions

We begin with a useful theorem.

Theorem 1 (Power of a Point): Let ω be a circle, N a point not on ω, and L any line through which
intersects ω at two points M and M ′. (Note: If L is tangent to ω, we consider the tangency point to be both
M and M ′) Then the value NM ·NM ′ is the same for any choice of line L.

Problem 2 (Bonus) Prove Theorem 1.

Solution: The below shows the case where N is inside the circle; the case where N is outside is similar. The
triangles NMP and NP ′M ′ are similar because angles NMP and NP ′M ′ subtend the same arc.
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Definition 3 Let ω be a circle with center O and radius r. The inversion of any point M ̸= O in the plane
(denoted iω(M)) is the point N lying on ray OM such that OM ·ON = r2.

Recall that, when we studied the sphere, inversion also mapped the points O and ∞ to each other. We’ll
consider these two be inverses for the sake of simplicity.

Problem 3 We say that two circles are orthogonal if their tangent lines are orthogonal at the points where
they intersect. Show that a circle orthogonal to ω maps to itself under inversion with respect to ω.

Solution: Consider the following circle centered at B which is orthogonal to the one centered at O. Given
any point M on the former circle, drawing the ray OM until it intersects the circle again at N , we see that
r2 = OA2 = OM ·ON by Power of a Point.
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Problem 4 Show that the inversion of any circle is a circle. (Here, we consider lines to be circles passing
through ∞.)

Solution: The following shows the case of a line; a circle follows similarly.

Problem 5 In general, two shapes intersect at an angle θ if their tangent lines at that point intersect at an
angle θ. Show that the inversion of any shapes that intersect at an angle θ still intersect at angle θ.

Solution: Assume that the two shapes intersecting are lines (if not, just replace them with their tangent
lines.
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Problem 6 Define the cross ratio between any four points A,B,C,D by

[A,B;C,D] =
AC ·BD

AD ·BC

Show that, when we invert A,B,C, and D about a point that is neither of these four points, the cross ratio
stays the same; that is, [A,B;C,D] = [iω(A), iω(B); iω(C), iω(D)

Solution: If A and C are collinear, this follows easily. If they are not, then triangle OAC is similar to triangle
Oiω(A)iω(C), and similarly for each other segment, so that

AC · iω(B)iω(C) ·BD · iω(A)iω(D)

BC · iω(A)iω(C) ·AD · iω(B)iω(D)
= 1

3 The Hyperbolic Plane

Definition 4 In Poincaré’s model of the hyperbolic plane, also known as the Poincaré disk:

• The points are all points on the plane that are less than 1 away from the origin in distance.

• The points on the unit circle S1 (exactly 1 away from the origin in distance) are called the ideal points.

• The (hyperbolic) lines are given by circles orthogonal to S1. Note that, as before, straight lines are
considered circles through ∞. Lines are parallel if they do not intersect.

Problem 7 Which straight lines are hyperbolic lines?

Solution: A straight line is orthogonal to S1 if and only if it is a diameter of S1.
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Definition 5 Let A and B be points in the hyperbolic plane. Let P and Q be the ideal endpoints of the
hyperbolic line connecting A and B such that P is closer to B and Q is closer to A. The hyperbolic distance
from A to B is given by

d(A,B) := log([A,B;P,Q])

where the cross ratio uses the usual distance in the plane.

Problem 8 We typically use base e for logarithms unless otherwise specified, but in the case of definition
5, it actually doesn’t matter at all what the base is, because we can change the base. Show that

loga(c) = loga(b) logb(c)

Using the formula, explain why the base of the logarithm doesn’t matter.

Solution: An intuitive proof of the change of base formula is as follows: the number of powers of a to make
c is the same as the number of powers of a to make c, if we first take powers of a to make b. A formal proof
can be given by exponentiating. So given any base of the logarithm, we can change it to any other base by
multiplying by loga(b).

While we can think of Definitions 4 and 5 as abstract definitions of things called ”Point”, ”Line”, and
”Distance”, the Poincaré model is really a projection of a hyperbolic surface, as shown below. The distance
as defined above is based on the distance on the surface, so we will be working mainly with the disk model
as it is nicer to compute.

Problem 9 Show that:

• d(A,B) ≥ 0 with equality if and only if A = B.

Solution: log(x) ≥ 0 if and only if x ≥ 1, with equality if and only if x = 1, so we look at the cross ratio.
Since AP ≥ BP and BQ ≥ AQ, the numerator of the cross ratio is greater than the denominator,
unless A = B in which case both of these are equal.

• d(A,B) = d(B,A)

Solution: Switching A and B also switches P and Q, so looking at the cross ratio,

AP ·BQ

AQ ·BP
=

BQ ·AP

BP ·AQ
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• If A,B, and C are hyperbolic collinear (in that order), d(A,C) = d(A,B) + d(B,C).

Solution: If A,B, and C are hyperbolic collinear, extend that hyperbolic line to P and Q. Without loss
of generality, suppose the points are Q,A,B,C, P in that order (otherwise, relabel P,Q). Then

d(A,B) + d(B,C) = log

(
AP ·BQ

AQ ·BP

)
+ log

(
BP · CQ

BQ · CP

)
= log

(
AP ·BQ

AQ ·BP
× BP · CQ

BQ · CP

)
= log

(
AP · CQ

AQ · CP

)
= d(A,C)
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In general, if three points are not collinear, we have the hyperbolic triangle inequality, which is a result
analogous to the one for normal distance. Just like in Euclidean geometry, a triangle has three sides which
are hyperbolic line segments, a quadrilateral four such sides, and so on. The following shows a tiling of the
Poincaré disk using hyperbolic pentagons.

Problem 10 We can see a lot of parallel lines in the above image. Prove that the hyperbolic plane satisfies
the second ”alternative” parallel postulate above. Given any line and a point not on that line, how many
parallel lines are there passing through that point?

Solution: Various different proofs. There are infinitely many different parallel lines passing through that
point.

7



Problem 11 A hyperbolic circle is the set of points equidistant (with respect to the hyperbolic distance)
from some point. What is the Euclidean shape of a hyperbolic circle centered at the origin? What about at
any other point?

Solution: The Euclidean shape of any hyperbolic circle centered at the origin is a circle centered at the
origin. To see this, consider the distance between the origin and any point A. The points P and Q given in
Definition 5 lie at the ends of the diameter through A, so that the hyperbolic distance from A to the origin
depends only on the Euclidean distance from A to the origin, so a hyperbolic circle centered at the origin is
the set of points with the same Euclidean distance to the origin, and therefore is a Euclidean circle.

A hyperbolic circle about any other point is still a Euclidean circle, but not centered at that point. This is
because inversion preserves lengths, so we can switch any other point for the origin, and invert back to get
a circle by Problem 4. But inversion doesn’t preserve the center of a circle in general.

4 Angles in the Hyperbolic Plane

In Euclidean geometry, the angles of a triangle add up to 180 degrees (and quadrilaterals 360 degrees, and
so on). In hyperbolic geometry, we can still make sense of angles (as the angle between the tangent lines)
but as we can see on the previous image, it seems to not be the case that pentagons have angles which add
up to 540 degrees.

Problem 12 Show that the angles of a (non-degenerate) triangle add up to less than 180 degrees. (Hint:
Use an inversion to move one vertex to the origin and use Problem 5.)

Solution: By inverting about the right circle, assume one vertex is at the origin. Then two edges are straight
(they are along diameters) so the hyperbolic triangle is immediately comparable to the Euclidean triangle
with those vertices. Since the hyperbolic triangle must be concave, its angles must be strictly smaller.
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Definition 6 Given a line L and a point P not on L, let R1 and R2 be the hyperbolic rays from P to the
ideal endpoints of L. The angle of parallelism is the angle between R1 and the perpendicular from P to
L.

Problem 13 Show that the angle of parallelism also equals the angle between R2 and the perpendicular from
P to L.

Solution: Essentially by symmetry.

Like in Euclidean geometry, the length of this perpendicular from P to L is said to be the distance from P
to L. Unlike in Euclidean geoemtry, however, we have a very easy way to find this distance in hyperbolic
space:

Theorem 2 (Lobachevsky’s Theorem) Let L be a line and P a point not on that line with angle of parallelism
θ. The distance d from P to L is given by

d = − log

(
tan

(
θ

2

))
Problem 14 (Bonus) Prove Lobachevsky’s Theorem.
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