Axiom Reference Sheet

It can be really tough to remember all of the algebraic axioms at first. To help you out, here is a reference sheet listing them all! We also include a table showing which types of numbers on the real line satisfy which axioms.

Let S be a set of objects. Suppose we can add and multiply together the objects in S, meaning there are binary operations $+$ and \cdot on S. Then, we have the following definitions of algebraic axioms on S (we put formal and casual versions to help you remember).

Axiom 1 (Closure of addition). *We say that S is closed under addition if the following is true.*

- Formally: $x + y$ is in S whenever x, y are in S.
- Casually: addition keeps you inside of S.

Axiom 2 (Closure of multiplication). *We say that S is closed under multiplication if the following is true.*

- Formally: $x \cdot y$ is in S whenever x, y are in S.
- Casually: multiplication keeps you inside of S.

Axiom 3 (Associativity of addition). *We say that S satisfies the associativity of addition if the following is true.*

- Formally: $x + (y + z) = (x + y) + z$ for objects x, y, z in S.
- Casually: we can ignore parentheses when adding.

Axiom 4 (Associativity of multiplication). *We say that S satisfies the associativity of multiplication if the following is true.*

- Formally: $x \cdot (y \cdot z) = (x \cdot y) \cdot z$ for objects x, y, z in S.
- Casually: we can ignore parentheses when multiplying.
Axiom 5 (Commutativity of addition). We say that S satisfies the commutativity of addition if the following is true.

- Formally: $x + y = y + x$ for objects x, y in S.
- Casually: we can ignore order when adding.

Axiom 6 (Commutativity of multiplication). We say that S satisfies the commutativity of multiplication if the following is true.

- Formally: $x \cdot y = y \cdot x$ for objects x, y in S.
- Casually: we can ignore order when multiplying.

Axiom 7 (Identity of addition). We say that S has an additive identity a if the following is true.

- Formally: There is an object a in S such that $a + x = x + a = x$ for all objects x in S.
- Casually: There’s an object that does nothing when adding with it.

Axiom 8 (Identity of multiplication). We say that S has a multiplicative identity m if the following is true.

- Formally: There is an object m in S such that $m \cdot x = x \cdot m = x$ for all objects x in S.
- Casually: There’s an object that does nothing when multiplying by it.
Axiom 9 (Inverse of addition). Suppose S has an additive identity a. We say that S satisfies the additive inverse axiom if the following is true.

- Formally: For an object x in S, there is a corresponding object y in S such that $y + x = x + y = a$. We call y the additive inverse of x.
- Casually: There’s always an opposite object when adding.

Axiom 10 (Inverse of multiplication). Suppose S has a multiplicative identity m. We say that S satisfies the multiplicative inverse axiom if the following is true.

- Formally: For an object x in S (not equal to the additive identity a if it exists in S), there is a corresponding object y in S such that $y \cdot x = x \cdot y = m$. We call y the multiplicative inverse of x.
- Casually: There’s always an opposite object when multiplying (except for the additive identity a if it exists in S).

Axiom 11 (Left distributivity). We say that S satisfies left distributivity if the following is true.

- Formally: $x \cdot (y + z) = (x \cdot y) + (x \cdot z)$ for objects x, y, z in S.
- Casually: Multiplication jumps over addition on the left.

Axiom 12 (Right distributivity). We say that S satisfies right distributivity if the following is true.

- Formally: $(y + z) \cdot x = (y \cdot x) + (z \cdot x)$ for objects x, y, z in S.
- Casually: Multiplication jumps over addition on the right.
Recall the types of numbers on the real line from the second handout (What is a Number Part II): naturals \(\mathbb{N} \), wholes \(\mathbb{W} \), integers \(\mathbb{Z} \), rationals \(\mathbb{Q} \), reals \(\mathbb{R} \). We also had an extra credit discussion about the irrationals \(\mathbb{P} \) which are defined to be all the real numbers that are not rational. Below is a chart of which number type satisfies the above axioms. A checkmark \(\checkmark \) means the axiom is satisfied while an \(\times \) means it is not.

<table>
<thead>
<tr>
<th></th>
<th>(\mathbb{N})</th>
<th>(\mathbb{W})</th>
<th>(\mathbb{Z})</th>
<th>(\mathbb{Q})</th>
<th>(\mathbb{R})</th>
<th>(\mathbb{P})</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ closure</td>
<td>(\checkmark)</td>
<td>(\times)</td>
</tr>
<tr>
<td>+ associativity</td>
<td>(\checkmark)</td>
</tr>
<tr>
<td>+ commutativity</td>
<td>(\checkmark)</td>
</tr>
<tr>
<td>+ identity</td>
<td>(\times)</td>
<td>(\checkmark)</td>
<td>(\checkmark)</td>
<td>(\checkmark)</td>
<td>(\checkmark)</td>
<td>(\times)</td>
</tr>
<tr>
<td>+ inverse</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\checkmark)</td>
<td>(\checkmark)</td>
<td>(\checkmark)</td>
<td>(\checkmark)</td>
</tr>
<tr>
<td>· closure</td>
<td>(\checkmark)</td>
<td>(\times)</td>
</tr>
<tr>
<td>· associativity</td>
<td>(\checkmark)</td>
</tr>
<tr>
<td>· commutativity</td>
<td>(\checkmark)</td>
</tr>
<tr>
<td>· identity</td>
<td>(\checkmark)</td>
<td>(\times)</td>
</tr>
<tr>
<td>· inverse</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\checkmark)</td>
<td>(\checkmark)</td>
<td>(\checkmark)</td>
</tr>
<tr>
<td>Left distributivity</td>
<td>(\checkmark)</td>
</tr>
<tr>
<td>Right distributivity</td>
<td>(\checkmark)</td>
</tr>
</tbody>
</table>