Worksheet 5: Fields

In Mathematics, a Field is a set on which addition, multiplication, subtraction, and division are defined and behave as they do in the real numbers (\(\mathbb{R}\)) or rational numbers (\(\mathbb{Q}\)).

The following set of rules are called Field axioms. These are the rules that a set \(F\) with addition + and multiplication \(\times\) must satisfy to be called a Field.

Definition 1. Let \(F\) be a set with two binary operations + and \(\times\). The first is called addition and the second multiplication. We say that \(F\) is a Field if it satisfies the following conditions:

1. **Associativity:** \(a + (b + c) = (a + b) + c\) and \(a \times (b \times c) = (a \times b) \times c\) for every \(a, b, c \in F\).
2. **Commutativity:** \(a + b = b + a\) and \(a \times b = b \times a\) for every \(a, b \in F\).
3. **Identity:** There exists 0 \(\in\) \(F\) for which \(0 + a = a\) for every \(a \in F\). There exists 1 \(\in\) \(F\) for which \(1 \times a = a\) for every \(a \in F\).
4. **Additive inverses:** For every \(a \in F\) there exists \(b \in F\) for which \(a + b = 0\). This element \(b\) is usually denoted by \(-a\).
5. **Multiplicative inverses:** For every \(a \in F\), with \(a \neq 0\) there exists \(b \in F\) for which \(ab = 1\). This element is usually denoted by \(b = a^{-1}\).
6. **Distributive of addition over multiplication:** For every \(a, b, c \in F\), we have that \(a \times (b + c) = a \times b + a \times c\).

Problem 4.0: Decide whether the following sets with addition and multiplication are Fields or not:

- The integer numbers \(\mathbb{Z}\) with the usual addition and multiplication.
- The rational number \(\mathbb{Q}\) with the usual addition and multiplication.
- The complex numbers \(\mathbb{C}\) with the usual addition and multiplication.
- The set \(\mathbb{Z}_2 := \{0, 1\}\) with addition and multiplication modulo 2.
- The set \(\mathbb{Z}_5 := \{0, 1, 2, 3, 4\}\) with addition and multiplication modulo 5.
- The set \(\mathbb{Z}_6 := \{0, 1, 2, 3, 4, 5\}\) with addition and multiplication modulo 6.
- The set \(M_{2 \times 2}(\mathbb{Z})\) of \(2 \times 2\) matrices with integer entries.
- The set \(M_{2 \times 2}(\mathbb{Q})\) of \(2 \times 2\) matrices with rational entries.
- The set \(\mathbb{R}[x]\) of real polynomials with variable \(x\).
- The quaternions with the usual addition and multiplication.

Solution 4.0:
Problem 4.1: For each $n \in \{2, 3, 4, 5\}$. Show that there exists a Field F that has exactly n elements.

Solution 4.1:

Definition 2. Let R be a set with addition $+$ and multiplication \times. Let $0 \in R$ be the identity element with respect to the addition $+$. We say that two elements a and b are zero divisors if neither of them are zero and $a \times b = 0$.

For instance, in \mathbb{Z}_4, we have that $2 \times 2 = 0$. However, $2 \neq 0$. Then, the element 2 is a zero divisor in \mathbb{Z}_4.

Problem 4.2: Show that a Field $(F, +, \times)$ contains no zero divisors.

Conclude that if n is a composite number, then \mathbb{Z}_n is not a field.

Show that if p is a prime number, then \mathbb{Z}_p is a field.

Solution 4.2:

Problem 4.3: Let $(F, +, \times)$ be a field. Show that $(F, +)$ and $(F \setminus \{0\})$ are groups.

Solution 4.3:
Definition 3. Let \mathbb{Q} be the field of rational numbers. Let μ be a m-root of unity, i.e., a complex number for which $\mu^m = 1$. For instance, the number (-1) is a 2-root of unity. Consider the set

$$\mathbb{Q}(\mu) := \{q_1 + q_2\mu + \cdots + q_{m-1}\mu^{m-1} \mid q_i \in \mathbb{Q}\}.$$

This set is called the extension of \mathbb{Q} by μ. For instance, if we extend \mathbb{Q} with the 2-root of unity -1, then we just get \mathbb{Q}. If we extend \mathbb{Q} with the 4-root of unity i, then we get

$$\mathbb{Q}(i) := \{q_1 + iq_2 \mid q_1, q_2 \in \mathbb{Q}\}.$$

These are called rational complex numbers.

Problem 4.4: Show that a m-root of unity must have the form

$$\cos\left(\frac{2k\pi}{m}\right) + i\sin\left(\frac{2k\pi}{m}\right),$$

where k is some integer in $\{0, \ldots, m - 1\}$.

Let \mathbb{Q} be the field of rational numbers and μ be a m-root of unity. Explains whether Solution 4.4:

Definition 4. Let $(F, +, \times)$ be a field. Let $H \subset F$ be a subset that contains 0 and 1 such that H becomes a field when we restrict the addition $+$ and the multiplication \times to it. In this case, we say that H is a subfield of F and we write $H \leq F$.

For instance, we have a sequence of subfields:

$$\mathbb{Q} \leq \mathbb{R} \leq \mathbb{C}.$$

Problem 4.5: Find all the fields F for which we have a sequence of subfields $\mathbb{R} \leq F \leq \mathbb{C}$.
Can you find an infinite sequence of fields $\{F_i\}_{i \geq 0}$ for which $F_0 = \mathbb{Q}$, $F_i \leq F_{i+1}$, and each $F_i \leq \mathbb{R}$?
Problem 4.6: Consider the three polynomials:

\[p_1(x) = x^3 - x^2 - x + 1, \]
\[p_2(x) = x^3 + x^2 + x + 1, \]
\[p_3(x) = x^3 + 3x^2 - 6x - 18. \]

For each polynomial \(p_i \), find all the solutions of \(p_i \) in the field \(\mathbb{Q} \), in the field \(\mathbb{R} \), in the field \(\mathbb{C} \), in the field \(F_5 \), and the field \(F_7 \).

Solution 4.6:

Definition 5. Let \((F, +, \times)\) and \((H, +, \times)\) be two fields. A field homomorphism is a function \(\phi: F \to H \) that satisfies the following conditions:

\[\phi(a + b) = \phi(a) + \phi(b) \text{ for every } a, b \in F. \]
\[\phi(ab) = \phi(a)\phi(b) \text{ for every } a, b \in F. \]
\[\phi(1_F) = 1_H, \text{ where } 1_F \text{ is the multiplicative identity of } F \text{ and } 1_H \text{ is the multiplicative identity of } H. \]

In other words, a field homomorphism is a function between the fields that “respect” the structure of both fields.

Problem 4.7: Let \((F, +, \times)\) and \((H, +, \times)\) be two fields and \(\phi: F \to H \) be a field homomorphism. Let \(0_F \) be the additive identity of \(F \). Analogously, let \(0_H \) be the additive identity of \(H \).

Show that \(\phi(0_F) = 0_H \).

Write an example of a field homomorphism.

Show that if \(p \) and \(q \) are prime numbers, then there are no field homomorphism \(\phi: \mathbb{Z}_p \to \mathbb{Z}_q \).

Solution 4.7:
Definition 6. We say that two fields F and H are isomorphic if there exists a bijective field homomorphism between them.

Problem 4.8: Let $\mathbb{R}[x]$ be the set of real polynomials. We write $\mathbb{R}[x](\text{mod } x^2+1)$ to be the set of real polynomials modulo the relation $x^2+1 = 0$. This means that in $\mathbb{R}[x](\text{mod } x^2+1)$ two polynomials $p(x)$ and $q(x)$ are considered to be the same if $p(x) - q(x)$ is divisible by $x^2 + 1$.
Show that $\mathbb{R}[x](\text{mod } x^2+1)$ is a field.
Show that $\mathbb{R}[x](\text{mod } x^2+1)$ is isomorphic to \mathbb{C}.

Solution 4.8:

Definition 7. We consider an infinite ruler and a compass. The ruler is infinite however it has no measures, i.e., the ruler can only be used to draw finite line segments between two points in \mathbb{R}^2. The compass can only be used to draw a circle with center p and radius pq whenever p and q are two given points in the space \mathbb{R}^2. The compass does not have memory, i.e., it closes immediately after drawing the circle.

A *construction with ruler and compass* is a drawing that can be obtained using the “infinite ruler” and the “memoryless compass” starting from a single line segment of length 1 and endpoints p_0 and p_1.

For instance, an example of a construction with ruler and compass is a circle of radius 1. We can put the compass in the vertices p_0 and p_1 and draw the circle. Then, we can construct a segment of length 2. We can prolonge the line through p_0 and p_1 until we intersect the circle in a second point q. Then, the interval segment $p_1 q$ has length 2 as shown in the picture:
We say that a real number $x \in \mathbb{R}$ is \textit{constructible} if starting with a line segment of length 1 we can draw a line segment of length x or length $-x$ via a construction of rules and compass.

Problem 4.9: Show that the integers are constructible real numbers.

Solution 4.9:

Problem 4.10: Show that if x is a constructible real number, then \sqrt{x} is a constructible real number.

Solution 4.10:

Problem 4.11: Show that if x and y are constructible real numbers, then $x + y$ is a constructible real number. Show that if x and y are constructible real numbers, then $x \times y$ is a constructible real number.

Solution 4.11:
Problem 4.12: Show that if \(x \) is a non-zero constructible real number, then \(x^{-1} \) is a constructible real number.

Solution 4.12:

Problem 4.13: Let \(C \subset \mathbb{R} \) be the set of constructible real numbers.
Show that \(C \) with the usual addition and multiplication is a field.
Show that \(C \) is the smallest subfield of \(\mathbb{R} \) that is closed under taking square roots of positive numbers.

Solution 4.13: