Dad says that anyone who can’t use a slide rule is a cultural illiterate and should not be allowed to vote.

Have Space Suit – Will Travel, 1958

Part 1: Logarithms

Definition 1:
The logarithm is the inverse of the exponent. That is, if \(b^p = c \), then \(\log_b c = p \).
In other words, \(\log_b c \) asks the question “what power do I need to raise \(b \) to to get \(c \)?”

In both \(b^p \) and \(\log_b c \), the number \(b \) is called the base.

Problem 1:
Evaluate the following by hand:

1. \(\log_{10} (1000) \)
2. \(\log_2 (64) \)
3. \(\log_2 \left(\frac{1}{4} \right) \)
4. \(\log_x (x) \) for any \(x \)
5. \(\log_x (1) \) for any \(x \)
Definition 2:
There are a few ways to write logarithms:
\[
\begin{align*}
\log x &= \log_{10} x \\
\lg x &= \log_{10} x \\
\ln x &= \log_e x
\end{align*}
\]

Definition 3:
The *domain* of a function is the set of values it can take as inputs.
The *range* of a function is the set of values it can produce.

For example, the domain and range of \(f(x) = x \) is \(\mathbb{R} \), all real numbers.
The domain of \(f(x) = |x| \) is \(\mathbb{R} \), and its range is \(\mathbb{R}^+ \cap \{0\} \), all positive real numbers and 0.

Note that the domain and range of a function are not always equal.

Problem 2:
What is the domain of \(f(x) = 5^x \)?
What is the range of \(f(x) = 5^x \)?

Problem 3:
What is the domain of \(f(x) = \log x \)?
What is the range of \(f(x) = \log x \)?
Problem 4:
Prove the following identities:
1. $\log_b (b^x) = x$
2. $b^{\log_b x} = x$
3. $\log_b(xy) = \log_b(x) + \log_b(y)$
4. $\log_b \left(\frac{x}{y} \right) = \log_b(x) - \log_b(y)$
5. $\log_b(x^y) = y \log_b(x)$
Part 2: Introduction

Mathematicians, physicists, and engineers needed to quickly solve complex equations even before computers were invented.

The *slide rule* is an instrument that uses the logarithm to solve this problem. Before you continue, cut out and assemble your slide rule.

There are four scales on your slide rule, each labeled with a letter on the left side:

Scale	0	1	2	3	4	5	6	7	8	9	10	15	20	25	30	35	40	45			
T										15	20	25	30	35	40	45					
K	2	3	4	5	6	7	8	9	10												
A	1	2	3	4	5	6	7	8	9	1											
B	1	2	3	4	5	6	7	8	9	1											
CI	9	8	7	6	5	4	3	2	1	1											
C	1	1.5	2	3	4	5	6	7	8	9	1										
D	1	1.5	2	3	4	5	6	7	8	9	1										
L	0	.1	.2	.3	.4	.5	.6	.7	.8	.9	1										
S	6	7	8	9	10	15	20	25	30	40	50	60	90								

Each scale’s “generating function” is on the right:

- T: tan
- K: x^3
- A,B: x^2
- CI: $\frac{1}{x}$
- C, D: x
- L: log_{10}(x)
- S: sin

Once you understand the layout of your slide rule, move on to the next page.
Part 3: Multiplication

We’ll use the C and D scales of your slide rule to multiply. Say we want to multiply 2×3. First, move the left-hand index of the C scale over the smaller number, 2:

```
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>1.5</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>1.5</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>1</td>
</tr>
</tbody>
</table>
```

Then we’ll find the second number, 3 on the C scale, and read the D scale under it:

```
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>1.5</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>1.5</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>1</td>
</tr>
</tbody>
</table>
```

Of course, our answer is 6.

Problem 5:
What is 1.15×2.1?
Use your slide rule.

Note that your answer isn’t exact. $1.15 \times 2.1 = 2.415$, but an answer accurate within two decimal places is close enough for most practical applications.
Look at your C and D scales again. They contain every number between 1 and 10, but no more than that. What should we do if we want to calculate 32×210?

Problem 6:
Using your slide rule, calculate 32×210.

Problem 7:
Compute the following:
1. 1.44×52
2. 0.38×1.24
3. $\pi \times 2.35$
Problem 8:
Note that the numbers on your C and D scales are logarithmically spaced.

Why does our multiplication procedure work?
Now we want to compute 7.2 × 5.5:

No matter what order we go in, the answer ends up off the scale. There must be another way.

Look at the far right of your C scale. There’s an arrow pointing to the 10 tick, labeled right-hand index. Move it over the larger number, 7.2:

Now find the smaller number, 5.5, on the C scale, and read the D scale under it:

Our answer should be about 7 × 5 = 35, so let’s move the decimal point: 5.5 × 7.2 = 39.6. We can do this by hand to verify our answer.

Problem 9:
Why does this work?
Problem 10:
Compute the following using your slide rule:
1. 9×8
2. 15×35
3. 42.1×7.65
4. 6.5^2
Part 4: Division

Now that you can multiply, division should be easy. All you need to do is work backwards. Let’s look at our first example again: $3 \times 2 = 6$.

We can easily see that $6 \div 3 = 2$

and that $6 \div 2 = 3$:

If your left-hand index is off the scale, read the right-hand one. Consider $42.25 \div 6.5 = 6.5$:

Place your decimal points carefully.
Problem 11:
Compute the following using your slide rule.
1. $135 \div 15$
2. $68.2 \div 0.575$
3. $(118 \times 0.51) \div 6.6$
Part 5: Squares, Cubes, and Roots

Now, take a look at scales A and B, and note the label on the right: x^2. If C, D are x, A and B are x^2, and K is x^3.

Finding squares of numbers up to ten is straightforward: just read the scale. Square roots are also easy: find your number on B and read its pair on C.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td></td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>1.5</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

Problem 12:
Compute the following.
1. 1.5^2
2. 3.1^2
3. 7^3
4. $\sqrt{14}$
5. $\sqrt[3]{150}$

Problem 13:
Compute the following.
1. 42^2
2. $\sqrt{200}$
3. $\sqrt{2000}$
4. $\sqrt{0.9}$
5. $\sqrt[3]{0.12}$
Part 6: Inverses

Try finding $1 \div 32$ using your slide rule. The procedure we learned before doesn’t work!

This is why we have the CI scale, or the “C Inverse” scale.

Problem 14:
Figure out how the CI scale works and compute the following:

1. $\frac{1}{7}$
2. $\frac{1}{120}$
3. $\frac{1}{\pi}$
Part 7: Logarithms Base 10

When we take a logarithm, the resulting number has two parts: the *characteristic* and the *mantissa*. The characteristic is the integral (whole-numbered) part of the answer, and the mantissa is the fractional part (what comes after the decimal).

For example, \(\log_{10} 18 = 1.255 \), so in this case the characteristic is 1 and the mantissa is 0.255.

Problem 15:
Approximate the following logs without a slide rule. Find the exact characteristic, and approximate the mantissa.
1. \(\log_{10} 20 \)
2. \(\log_{2} 18 \)

Now, find the L scale on your slide rule. As you can see on the right, its generating function is \(\log_{10} x \).

Problem 16:
Compute the following logarithms using your slide rule. You’ll have to find the characteristic yourself, but your L scale will give you the mantissa. Don’t forget your log identities!
1. \(\log_{10} 20 \)
2. \(\log_{10} 15 \)
3. \(\log_{10} 150 \)
4. \(\log_{10} 0.024 \)
Part 8: Logarithms in Any Base

Our slide rule easily computes logarithms in base 10, but we can also use it to find logarithms in any base.

Proposition 1:
This is usually called the change-of-base formula:

\[\log_b a = \frac{\log_c a}{\log_c b} \]

Problem 17:
Using log identities, prove Proposition 1.

Problem 18:
Approximate the following:
1. \(\log_2 56 \)
2. \(\log_{5.2} 26 \)
3. \(\log_{12} 500 \)
4. \(\log_{4.1} 134 \)
This page unintentionally left blank.
ASSEMBLY INSTRUCTIONS

1. Cut out the entire white panel (a). Cut along line between parts A and B (b), then remove excess (c).

2. Fold part A along the dotted lines.

3. Slip part B into the folded part A.