
ORMC AMC Group: Week 2

AMC Basics

October 2, 2022

1 Divisibility

Let X have digits xn, . . . , x1, x0. That is,

X = 10nxn + · · ·+ 10x1 + x0; x0, x1, . . . , xn ∈ {0, 1, 2, . . . , 9}.

For simplicity, we will allow xn · · ·x1x0 to denote such a number X.

Some (less-known/less-intuitive) divisibility tests:

• X is divisible by 7 when 2 times its last digit, subtracted from the rest of the number, yields a
number divisible by 7. That is, xn . . . x1 − 2x0 is divisible by 7.

• X is divisible by 9 when the sum of its digits is divisible by 9.

• X is divisible by 11 when the alternating sum of its digits is divisible by 11.
That is, x0 − x1 + x2 − x3 + · · ·+ (−1)nxn is divisible by 11.

Other things to know and remember when factoring numbers:

• Remember the factorizations from last week!

– 2071 = 1728 + 343 = 123 + 73 = (12 + 7)(122 − 12 · 7 + 72) = 19 · 109
– 2021 = 2025− 4 = 452 − 22 = (45− 2)(45 + 2) = 43 · 47

• A number is prime precisely when it is not divisible by all primes less than or equal to its square
root

– Proof: Exercise [Hint: use contradiction. Suppose a composite number was not divisible by
any prime ≤ its square root. Would this cause any problems?]

1.1 Problems

1. The 7-digit numbers 74A52B1 and 326AB4C are each multiples of 3. What is the sum of all
possible values of C?.

2. What is the prime factorization of 2023?

3. Which members of the sequence 101, 10101, 1010101, . . . are prime?
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2 Basic Modular Arithmetic

In modular arithmetic, we consider only integers, and we focus on some modulus, m. The main dif-
ference between modular arithmetic and regular integer arithmetic is that two numbers are considered
congruent, or equal “mod m” if their difference is divisible by m. We denote that two expressions
are congruent mod m by writing: a ≡ b (mod m). For example, if we take m = 12, then we would
have: −7 ≡ 5 ≡ 17 (mod 12).

2.1 Modular Arithmetic Operations

Similar to regular integer arithmetic, you may add, subtract, or multiply both sides of a congruence
mod m by the same thing:

• a ≡ b, c ≡ d (mod m) =⇒ a± c ≡ b± d (mod m), because if b− a and d− c are both divisible
by m, then so is (b− a)± (d− c) = (b+ d)− (a+ c).

• a ≡ b, c ≡ d (mod m) =⇒ ac ≡ bd (mod m), because because if b − a and d − c are both
divisible by m, then so is: b(d− c) + c(b− a) = bd− bc+ bc− ca = bd− ca

Unfortunately, we cannot do division. For example, consider 7 ≡ 12 (mod 5). 12 is usually divisible
by 2, but what would we do with the 7? Instead of dividing, we use inverses. The inverse of n mod m
is some number, written n−1, such that n−1n ≡ nn−1 ≡ 1 (mod m). The inverse of n mod m exists
precisely when gcd(m,n) = 1.

2.2 Problems

1. Suppose xn · · ·x1x0 ≡ 0 (mod 13). For what values k is it true that xn · · ·x1−kx0 ≡ 0 (mod 13)?

2. Find the remainder when 1 + 2 + · · ·+ 2022 is divided by 1000.

3. Let S be a subset of {1, 2, 3, . . . , 50} such that no pair of distinct elements in S has a sum divisible
by 7. What is the maximum number of elements in S?

4. In year N , the 300th day of the year is a Tuesday. In year N +1, the 200th day is also a Tuesday.
On what day of the week did the 100th day of year N − 1 occur?

5. Determine the smallest positive integer m such that m2 + 7m+ 89 is a multiple of 77.
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3 Modular Arithmetic Applications and Tools

Some important theorems that involve and/or are derived using modular arithmetic:

1. Wilson’s Theorem: for a prime p, (p− 1)! ≡ −1 (mod p).

(a) Each number in the set {2, . . . , p− 2} has a unique inverse, which is also in the set. So the
product of all these is congruent to 1, leaving us with (p− 1)! ≡ p− 1 ≡ −1 (mod p).

2. Fermat’s Little Theorem: for an odd prime p and any integer a, ap ≡ a (mod p).

(a) This is usually proved by induction, and involves the fact that the binomial coefficient
(
p
k

)
is divisible by p for 0 < k < p. We have 1p ≡ 1 and via induction, (a+1)p ≡ ap+1 ≡ a+1.

3. Euler’s Totient Theorem: Let ϕ(n) be the number of integers 0 < k < n such that gcd(k, n) = 1.
Then, aϕ(n) ≡ 1 (mod n) for any a relatively prime to n.

(a) Note that {k | 0 < k < n, gcd(k, n) = 1} = {ak | 0 < k < n, gcd(k, n) = 1}. Letting P
denote the product of all the elements in the first set, we have P ≡ aϕ(n)P =⇒ aϕ(n) ≡ 1.

4. Chinese Remainder Theorem (CRT): The system of equations x = a1 (mod m1), . . . , x = ak
(mod mk) has exactly one integer solution 0 ≤ x < m1m2 · · ·mk.

3.1 Problems

1. For what values of 0 < n ≤ 25 is (n−1)!
n an integer?

2. What is the value of 32022 (mod 223)?

3. Let an = 6n + 8n. Determine the remainder upon dividing a83 by 49.

4. Find the smallest solution to this system of congruences:

x ≡ 1 mod 2

x ≡ 2 mod 3

x ≡ 3 mod 5

x ≡ 4 mod 7
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4 Using Modular Arithmetic

Advice for using modular arithmetic:

• For modular exponentiation:

– Use Euler’s Theorem and Fermat’s Little Theorem to reduce large exponents

– When not checking for a pattern, use repeated squaring. i.e. 78 ≡ 94 ≡ 12 ≡ 1 (mod 10),
as opposed to 7 · 7 ≡ 9, 9 · 7 ≡ 3, . . ..

• When to use modular arithmetic as a tool:

– Checking when some expression is an integer

– Checking for divisibility, or when something is (almost) equally divided

– Solving an equation for integer solutions (isolate a prime p, then work mod p)

• General Advice

– In general, things that seem “large” in modular arithmetic can be simplified down to some-
thing smaller, or involve some repeated pattern.

– You can break down a very large modulus by its prime factors, then use the CRT to find
the solution. For example, instead of working directly mod 52, work mod 4 and mod 13
first.

4.1 Problems

1. Let a1, a2, . . . , a2018 be a strictly increasing sequence of positive integers such that

a1 + a2 + · · ·+ a2018 = 20182018.

What is the remainder when a31 + a32 + · · ·+ a32018 is divided by 6?

2. Let N = 123456789101112 . . . 4344 be the 79-digit number that is formed by writing the integers
from 1 to 44 in order, one after the other. What is the remainder when N is divided by 45?

3. There is a pile of eggs. Joan counted the eggs, but her count was off by 1 in the 1’s place. Tom’s
count was off by 1 in the 10’s place. Raoul was off by 1 in the 100’s place. Sasha, Jose, Peter,
and Morris all counted the eggs and got the correct count. When these seven people added their
counts together, the sum was 3162. How many eggs were in the pile?

4. Find the least positive integer n for which 2n + 5n − n is a multiple of 1000.
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