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MODULAR ARITHMETIC

1 Societal usage of clock face arithmetic

In math class, everyone is used to counting, adding, and mul-
tiplying integers on the straight number line. However, there
is a second, secret number system hiding in plain sight that all
people are familiar with. This secret system is how we tell time!
We can call it clock face arithmetic. We turn a circle into a
number line by dividing it into twelve equal parts. In this case,
one step is usually called one hour.
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The hour hand moves from 0 to 1, from 1 to 2, ..., from 11 to
12 just as it would have on the straight number line. However,
12 “equals” 0 on this circle, so there it goes again, from 1 to
2, and so on. We write down the fact that 12 “equals” 0, 13
‘equals” 1, 14 ‘equals” 2, and so on as

12 ≡ 0 (mod 12), 13 ≡ 1 (mod 12), 14 ≡ 2 (mod 12), . . .

We formally read the above notation as 12 is congruent to 0
modulo 12, 13 is congruent to 1 modulo 12, and 14 is congruent
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to 2 modulo 12. While the usual = sign is reserved for equality
on the straight number line; we use ≡ for equality (which we
call congruence) on the circle instead. Note that the symbol
(mod 12) tells us that the circle is divided into 12 equal parts.

Problem 1 Write down the smallest integers between 0 and 11
such that the following congruences are true.

21 ≡ (mod 12)

80 ≡ (mod 12)

9 + 4 ≡ (mod 12)

24− 2 ≡ (mod 12)
Problem 2 An experiment in a biological lab starts at 7:00 AM
and runs for 80 hours. What time will it end?
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Another standard (societal) way to turn a circle into a num-
ber line is to divide it into 60 equal parts. Depending on the
situation, the unit step is called either a minute or a second.
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All the numbers living on this number line are considered
modulo 60. We can define the congruence of integers modulo
60 just as we did modulo 12. In particular, we have 60 ≡ 0
(mod 60), 61 ≡ 1 (mod 60), 62 ≡ 2 (mod 60) and so on.

Problem 3 Write down the smallest integers between 0 and 59
such that the following congruences are true.

72 ≡ (mod 60)

−15 ≡ (mod 60)

55 + 55 ≡ (mod 60)

240− 59 ≡ (mod 60)
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Problem 4 What is the time, in hours, minutes, and seconds,
on the clock below?
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There are 24 hours in a day, so one further standard way
to turn a cricle into a number line is to divide it into 24 equal
parts. The US military uses the 24-hour clock. On the following
page is a photograph of the 24-hour clock from the USS (United
States Ship) Mullinnix, the last “all gun” US Navy destroyer in
the Pacific, decommissioned in 1982.1

1See its homepage at http://www.ussmullinnix.org/
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USS Mullinnix 24-hour clock.2

Since 60 ÷ 24 is not a whole number, we can’t use the same
marks on the face of a 24-hour clock for minutes and hours (to
better see this, please find the minute and hour marks on the face
of the USS Mullinnix clock). 60÷ 12 = 5, so this inconvenience
doesn’t exist for the clocks and watches we are used to. On the
other hand, to disambiguate between, say, 1 o’clock night time
and 1 o’clock afternoon, we have to use the A.M./P.M. notation
not needed in the military. In their language, 1 o’clock P.M. is
13:00, plain and simple.

Problem 5 What time does the USS Mullinnix clock show?

2Downloaded from http://www.ussmullinnix.org/MuxMemorabilia.html
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Problem 6 What is the time on the clock below?
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Suppose that this is the time P.M. How would the military
call it?

Problem 7 On the left, draw the civilian clock showing 1:45
P.M. On the right, draw the military clock showing 1:45 P.M.
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2 Generalizing clock face arithmetic

The planet of Heptadium in a galaxy far, far away makes one full
rotation around its axis in 7 heptahours. The folks inhabiting
Heptadium use heptahour clocks, pictured below.
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They further divide a heptahour into 49 heptaminutes and a
heptaminute into 49 heptaseconds. The heptahours are marked
on the inside of the dial, the heptaminutes – on the outside.

Problem 8 What time does the above heptahour clock show (in
heptahour and heptaminutes)?

Problem 9 One Heptadian tells another, “The next day will
begin in one minute.” What time is his watch showing (in hep-
tahour and heptaminutes)?
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Problem 10 An experiment in a Heptadium nuclear lab starts
at 4:00 and runs for 2000 hours. What time will it end?

Problem 11 They run four experiments in a Heptadium bio-
logical lab. The first three take an equal amount of time, the last
experiment is as long as the first three together. The experiments
are run one after another without time gaps. The first begins at
1:00. The last ends at 2:00. The first experiment takes more
than a day, but less than two days and lasts a whole number of
hours. How long does the last experiment take?

As the example of the Heptadians shows, there is nothing
stopping us from doing “clock face arithmetic” modulo any in-
teger greater than 1. While humans typically do clock face
arithmetic using 12, 24, or 60 as the modulus, the heptadians
use 7 and 49 as the modulus instead. Indeed, mathematicians
have thoroughly developed clock face arithmetic into the subject
called modular arithmetic, which finds many usages throughout
both pure and applied mathematics. We will try to develop the
foundations of modular arithmetic ourselves!
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In order to better understand modular arithmetic, we first
need to know a little bit about sets. In math, a set is simply a
collection of objects that we want to work with. For our pur-
poses, we will only work with sets that contain integers. Sets are
important as they allow us to easily talk about which integers we
are interested in. You can think of sets as being organizational
boxes that allow us to group together the integers in whatever
ways we want. Because of this, we do not care about the or-
der of the integers in sets. We also don’t allow repeats in sets.
Again, this is all because we simply use sets as ways to group
the integers together. Let’s consider the following example:

A = {1, 2, 3}.

A is the name we gave to our set that contains the integers
1, 2, 3. Notice that when writing sets, we write the integers
between curly brackets {· · ·}. As the order of the integers in the
set A doesn’t matter, we could have also defined A as

A = {2, 3, 1} or A = {3, 1, 2} or A = {3, 2, 1} . . .

Of course, A is not the only set we can define. Consider the
following examples.

B = {−4, 0}, C = {−1,−2,−3, . . .}, D = {even integers}.

The set B shows that our sets can contain 0 or negative integers
too. The set C shows that there is nothing stopping us from
defining sets that contain infinitely many integers! In this case,
C is the set of all negative integers. Notice how we used the
ellipses . . . so that we can avoid writing down all of the negative
integers forever. You should only use ellipses when the definition
of your set is clear. Finally, the set D also contains infinitely
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many integers, and shows that we can define sets using words
as well. We could have also written D as

D = {. . . ,−4,−2, 0, 2, 4, . . .} = {0,±2,±4,±6, . . .}.

The equivalent ways of defining the sets A and D in our above
examples brings up the natural notion for when two sets are
equal. We say two sets are equal when they contain exactly the
same objects. Determining when two sets are equal may not be
as easy as it sounds.

Problem 12 True or false: the following pairs of sets are equal.

{0, 1} = {1, 0}

{−1, 0, 1} = {1, 0}

{0, 1, 2, 3, . . .} = {positive integers}

{5, 6, 7, . . .} = {integers ≥ 5}

{1+12, 1+24} = {25, 25−12}
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We can use the mathematical tool of sets to better understand
clock face arithmetic modulo 12. Remember, we turn the circle
into a number line by dividing it into 12 parts as below.
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This circular number line tells us which integers we want to be
“the same”. So, for an integer a, we can use the circular number
line to find all of the integers that a is congruent to modulo
12. Starting at a, we can move around the circle clockwise n

times to get to a + n · 12. We can also move around the circle
counterclockwise n times to get to a + n · (−12). So, the set of
all integers that a is congruent to modulo 12 is

[a]12 = {a, a± 12, a± 2 · 12, a± 3 · 12, . . .},

which we call the congruence class of a modulo 12. For example,
the congruence classes of 0, 1, and 2 modulo 12 are

[0]12 = {. . . ,−36,−24,−12, 0, 12, 24, 36, . . .},

[1]12 = {. . . ,−35,−23,−11, 1, 13, 25, 37, . . .},
[2]12 = {. . . ,−34,−22,−10, 2, 14, 26, 38, . . .}.
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Problem 13 Write down all of the congruence classes modulo
12. How many are there in total? We will include for you the
ones already listed above.

[0]12 = {. . . ,−24,−12, 0, 12, 24, . . .}

[1]12 = {. . . ,−23,−11, 1, 13, 25, . . .}

[2]12 = {. . . ,−22,−10, 2, 14, 26, . . .}
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Problem 14 Fill in the set definition for the following congru-
ence classes.

[21]12 = { }

[9 · 2]12 = { }

[2−24]12 = { }
The main takeaway is that, for integers a, b, we can determine

if a is congruent to b modulo 12 by checking to see if b is in the
set [a]12 or not. Actually, we have the following two results which
characterize congruency via equality of sets.

Problem 15 Let a, b be integers. Prove that if a is congruent
to b modulo 12, meaning b is in the set [a]12, then [b]12 = [a]12.

Problem 16 Let a, b be integers. Prove that if [b]12 = [a]12,
then a is congruent to b modulo 12 meaning that b is in the set
[a]12. Hint: this should be very, very simple.
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Together, Problem 15 and Problem 16 say that two integers
are congruent modulo 12 if and only if their congruence classes
are equal! This set equality definition of congruency will let us
easily generalize clock face arithmetic to any modulus M ≥ 2.

Problem 17 Let M ≥ 2 and a both be integers. Can you define
the congruence class of a modulo M?

[a]M = { }

Problem 18 Let M ≥ 2 and a, b all be integers. Recall we say
that a is congruent to b modulo 12 if [a]12 = [b]12 as sets. Also,
when a is congruent to b modulo 12, we write a ≡ b (mod 12).
Can you define when a is congruent to b modulo M using your
answer from Problem 17? When a is congruent to b modulo M ,
we will write a ≡ b (mod M).

And we’ve done it! Problem 17 and Problem 18 define modu-
lar arithmetic for us using any modulus M ≥ 2! Of course, these
definitions on their own do not mean much. We should actually
develop a few rules about how congruence, modular addition,
and modular multiplication work!
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3 Modular congruence, addition, and multi-

plication

As we already know, we can think of congruency modulo M
as two numbers being “equal” on the circular number line di-
vided into M parts. So, we would want congruency to actually
satisfy the properties that equality on the number line satisfies.
These properties are called reflexivity, symmetry, and transitiv-
ity. Although you can take them for granted with equality on
the straight number line, let’s prove them for modular arith-
metic! The following proofs should be quite simple given your
answers to Problem 17 and Problem 18.

Problem 19 Let M ≥ 2 and a both be integers. Can you prove
a ≡ a (mod M)? This is called the reflexivity of congruency.

Problem 20 Let M ≥ 2 and a, b all be integers. Prove that
if a ≡ b (mod M), then b ≡ a (mod M). This is called the
symmetry of congruency.

Problem 21 Let M ≥ 2 and a, b, c all be integers. Prove that if
a ≡ b (mod M) and b ≡ c (mod M), then a ≡ c (mod M).
This is called the transitivity of congruency.

15



Now that we know congruence works as expected, we can
study how modular addition and multiplication work. We can
do so easily by proving the following two results first.

Problem 22 Let M ≥ 2 and a, b all be integers. Prove that if
a is congruent to b modulo M , then M divides a− b without any
remainder. In other words, prove there is some integer k such
that M · k = a− b (note that k does not have to be positive).

Problem 23 Let M ≥ 2 and a, b all be integers. Suppose that
M divides a− b without any remainder, meaning there is some
integer k such that M · k = a− b. Prove that a is congruent to
b modulo M . This problem is the converse to Problem 22.
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The following two results allow us to completely understand
modular addition and multiplication.

Problem 24 Let M ≥ 2 and a, b, k all be integers. Prove that
if a ≡ b (mod M), then

a + k ≡ b + k (mod M),

a · k ≡ b · k (mod M),

and
a · k ≡ b · k (mod M · k).

Problem 25 Let M ≥ 1 and a, b, c, d all be integers. Suppose

a ≡ b (mod M) and c ≡ d (mod M).

Prove that

a + c ≡ b + d (mod M) and a · c ≡ b · d (mod M).
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We will leave the analogue of “division” in modular arith-
metic as an extra challenge at the end of this packet. For now,
using the new rules of arithmetic you have learned, lets tackle a
few problems!

Problem 26 Fill in the set definition for the following congru-
ence classes.

[7]5 = { }

[14]5 = { }

[100]5 = { }

[−1]7 = { }

[6]7 = { }

[8]7 = { }
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Problem 27 Fill in the smallest integer between 0 and the mod-
ulus minus 1 (the number written after the notation mod) such
that the following congruencies are true.

1 + 7 ≡ (mod 5)

3 + 3 ≡ (mod 5)

2 · 17 ≡ (mod 8)

32 · 0 ≡ (mod 2)

1 + 3− 6 ≡ (mod 6)

1002 ≡ (mod 99)

((162− 4) · 8)− 1 ≡ (mod 4)

25100000 − 1 ≡ (mod 5)
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Problem 28 Write whether each of the following congruencies
are true or false.

1+ 9 ≡ 3 (mod 6)

3 + 3 ≡ 0 (mod 3)

17+2 ≡ 3+2 (mod 7)

29384 · 0 ≡ 2 (mod 9)

1+5−7 ≡ 101 (mod 10)

1002 ≡ 1 (mod 25)

302 − 309120382 ≡ 0 (mod 30)

4 · 25 + 1 ≡ −99 (mod 100)

20



We conclude this section with a few more challenging, and
interesting, examples!

Example 1 Find the smallest integer between 0 and 6 that is
congruent to 3100 modulo 7.

There are two ways to solve this problem. The first is more
obvious, but requires more work. Let us take a look at the con-
secutive powers of three.

31 = 3 ≡ 3 (mod 7)

32 = 31 · 3 = 9 ≡ 2 (mod 7)

33 = 32 · 3 ≡ 2 · 3 = 6 ≡ 6 (mod 7)

34 = 33 · 3 ≡ 6 · 3 = 18 ≡ 4 (mod 7)

35 = 34 · 3 ≡ 4 · 3 = 12 ≡ 5 (mod 7)

36 = 35 · 3 ≡ 5 · 3 = 15 ≡ 1 (mod 7)

37 = 36 · 3 ≡ 1 · 3 = 3 ≡ 3 (mod 7)

From this point on, the powers begin repeating one another in a
cycle of length six.

38 = 37 · 3 ≡ 3 · 3 = 9 ≡ 2 ≡ 32 (mod 7)

We get the following pattern.

31 ≡ 37 ≡ 313 ≡ 319 . . . (mod 7)

32 ≡ 38 ≡ 314 ≡ 320 . . . (mod 7)

33 ≡ 39 ≡ 315 ≡ 321 . . . (mod 7)

34 ≡ 310 ≡ 316 ≡ 322 . . . (mod 7)
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35 ≡ 311 ≡ 317 ≡ 323 . . . (mod 7)

36 ≡ 312 ≡ 318 ≡ 324 . . . (mod 7)

The final step of the solution is to figure out which of the above
six sequences contains 3100. Note that if we divide any power
from the first sequence by six, the remainder will always be equal
to 1. It will be equal to 2 for the second sequence, to 3 for the
third, and so on. Now, 100 = 96 + 4 = 16 · 6 + 4. Therefore,
3100 will appear in the forth sequence.

3100 ≡ 34 ≡ 4 (mod 7)

The following way to solve the above problem is more elegant.
Let us make a table with powers of two not exceeding 100 in the
left column and with the number three raised to the correspond-
ing power of two in the right one.

1 31 = 3 ≡ 3 (mod 7)

2 32 = 31 · 31 = 9 ≡ 2 (mod 7)

4 34 = 32 · 32 ≡ 2 · 2 = 4 ≡ 4 (mod 7)

8 38 = 34 · 34 ≡ 4 · 4 = 16 ≡ 2 (mod 7)

16 316 = 38 · 38 ≡ 2 · 2 = 4 ≡ 4 (mod 7)

32 332 = 316 · 316 ≡ 4 · 4 = 16 ≡ 2 (mod 7)

64 364 = 332 · 332 ≡ 2 · 2 = 4 ≡ 4 (mod 7)
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128 3128 = 364 · 364 ≡ 4 · 4 = 16 ≡ 2 (mod 7)

Since 100 < 128, we stop here. The last line is not needed
for the subsequent computations. It is used as a stop sign.

Next, let us represent 100 as a sum of powers of two.

100 = 64 + 32 + 4

Therefore,

3100 = 364 · 332 · 34 ≡ 4 · 2 · 4 = 32 ≡ 4 (mod 7).

Problem 29 Find the smallest integer between 0 and 6 that is
congruent to 51234 modulo 7.
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Problem 30 Find the last two digits of 72012. Since we are only
interested in the last two digits, we can reformulate the problem
as follows: find the smallest integer between 0 and 99 that is
congruent to 72012 modulo 100.
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4 Optional challenge: Modular division

In the prior section, we studied how addition and multiplication
work in modular arithmetic. However, when working on the
straight number line, there are two more important operations:
subtraction and division. Subtraction is the inverse of addition,
meaning that

(a + b)− b = a = (a− b) + b

for any integers a, b. Similarly, division is the inverse of multi-
plication, meaning that

(a · b)÷ b = a = (a÷ b) · b

for any integers a, b as long as b 6= 0 (remember we cannot di-
vide by 0). Although subtraction and division play analogous
roles on the straight number line, there is a major difference
between the operations. a− b is always an integer whenever a, b
are integers. However, a ÷ b does NOT have to be an integer
even when a, b are integers. Instead a÷ b = a

b is a rational num-
ber, which may or may not simplify to an integer. Because we
can only work with integers in modular arithmetic, this differ-
ence between subtraction and division is the underlying reason
for why subtraction in modular arithmetic is very simple to un-
derstand while division is much more complicated. For those
brave enough, we will discover how modular division works and
even understand the equivalent of “rational numbers” in modu-
lar arithmetic.
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Problem 31 Let M ≥ 2 and a, b, c, d, k all be integers. Prove
that if

a ≡ b (mod M) and c ≡ d (mod M),

then

a− k ≡ b− k (mod M) and a− c ≡ b− d (mod M).

Hint: the proof should be very easy if you use Problem 24 and/or
Problem 25.

Problem 31 is truly all we need to understand modular sub-
traction! The following is the first baby step we can take towards
understanding modular division. It allows us to cancel common
factors as though we can “divide” both sides by k.

Problem 32 Let M ≥ 2, k 6= 0, and a, b all be integers. Prove
that if a · k ≡ b · k (mod M · k), then a ≡ b (mod M).
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While Problem 32 is useful, it requires that we change the
modulus we are working with from M · k to M . This hints to-
wards the issue at the heart of modular division: understanding
the shared factors between k and the modulus. Let a, b be non-
zero integers. The greatest common divisor (gcd) of a, b is the
largest positive integer that divides a without remainder AND
also divides b without remainder, which we denote as gcd(a, b).
For example, gcd(4, 6) = 2 since 2 · 3 = 6, 2 · 2 = 4, and one can
check that any number larger than 2 does not divide 6 and 4.

Problem 33 Let a, b be two non-zero integers. Then, gcd(a, b)
is greater than or equal to 1. Also, gcd(a, b) is less than or equal
to the minimum of |a| and |b| (the absolute values of a, b). Why
are these two facts true?

Problem 34 Find the gcd of the following pairs of integers.

gcd(1, 9301293) =

gcd(10, 15) =

gcd(−6, 12) =

gcd(7, 9) =
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Now, we say that two non-zero integers a, b are coprime if
gcd(a, b) = 1. The notion of being coprime is important as it is
the core of the following result.

Theorem 1 Let a, b be two non-zero integers. Then, a, b are
coprime if and only if there exists integers x, y such that

ax + by = 1.

We skip the proof of Theorem 1 for now as it is a bit advanced.
Those who are interested can ask their instructors for the proof
after finishing this worksheet! Theorem 1 allows us prove a
version of Problem 32 that leaves the modulus unchanged.

Problem 35 Suppose a, b are coprime, non-zero integers. Let c
be an integer such that a divides b · c without remainder. Prove
that a must divide c without remainder. Hint: use Theorem 1
and then multiply by c.
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Problem 36 Let M ≥ 2, k 6= 0 be coprime integers. Also, let
a, b both be integers. Prove that if a · k ≡ b · k (mod M), then
a ≡ b (mod M). Hint: use Problem 35.

Note that, as promised, Problem 36 is a version of Problem
32 that leaves the modulus unchanged. We now conclude with
“rational numbers” in modular arithmetic.

Problem 37 Let M ≥ 2 and a 6= 0 both be integers. Prove that
there exists an integer x such that a · x = 1 (mod M) if and
only if M,a are coprime. Hint: use Theorem 1.

29



For coprime integers M ≥ 2 and a 6= 0, the integer x such
that a · x = 1 (mod M) is called the multiplicative inverse of
a modulo M . We typically denote it by a−1 = x. The multi-
plicative inverse a−1 of a modulo M is analogous to the rational
number 1

a on the straight number line. Indeed, a · 1a = 1 on
the straight number line while a · a−1 ≡ 1 (mod M) on the
circular number line. The whole reason we had to understand
gcd’s is because we only want to work with integers in modular
arithmetic, while rational numbers on the straight number line
do not have to be integers. This is the point of Problem 37.

A further interesting observation is that, since a−1 on the
circular number line corresponds to 1

a , we can think of the any
rational number b

a on the straight number line (where b is an
integer) as corresponding to b · a−1 on the circular number line.

Problem 38 Let M ≥ 2 and a, b 6= 0 all be integers. Suppose
a ≡ b (mod M). Prove that if the multiplicative inverse a−1 of
a modulo M exists, then the multiplicative b−1 of b modulo M
exists and a−1 ≡ b−1 (mod M).
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Example 2 We find the analog of 3
4 modulo 7. As explained

above, this means that we are looking for the integer x such that
x·4 ≡ 3 (mod 7) since 3

4 ·4 = 3 on the straight number line. Let
us first find the analog of 1

4, meaning the multiplicative inverse
4−1 of 4 modulo 7.

First, we can quickly see that gcd(4, 7) = 1 since 7 is prime
and 4 is not a multiple of 7. So, by Problem 37, we know that
the multiplicative inverse 4−1 of 4 modulo 7 exists. Now, there
are only seven congruence classes modulo 7, namely [0]7, [1]7,
[2]7, [3]7, [4]7, [5]7, and [6]7. One of them must contain the 4−1.
So, plugging the numbers 0, 1, 2, 3, 4, 5, 6 into the expression

2 · 4 ≡ 1 (mod 7)

one by one, we find that

2 · 4 = 8 ≡ 1 (mod 7),

meaning 2 is the multiplicative inverse of 4 modulo 7.
To finish, we know that 3

4 = 3 · 14 on the straight numberline.
So, the analog of 3

4 modulo 7 must be 3 times the multiplicative
inverse of 4 modulo 7. This is 3 · 2 = 6, and indeed

6 · 4 = 3 · (2 · 4) ≡ 3 · 1 = 3 (mod 7).

So, 6 corresponds to 3
4 modulo 7!

Problem 39 Find the analog of 1
2 modulo 7.
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Problem 40 Find the analog of 1
4, 2

4, and 3
4 all modulo 7.

Problem 41 Find the analog of 1
5, 2

5, 3
5, and 4

5 all modulo 9.
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