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\section{Galilean Relativity}
It's the early 1600s, in Italy. Your friend Galileo Galilei wants to make a point about motion. He's gone out into the harbor on a boat.

Let $t,x,y,z$ be the time and space coordinates Galileo measures on the moving boat. Let $t', x', y', z'$ be the time and space coordinates you measure, watching his experiment. You've synchronized your watches at the same time $t = t' = 0$, the boat is moving at velocity $v$ in the $x$-direction, which is parallel to the shore, and the $z$-direction is straight up. At time $0$, you both agree that the  bottom of the mast of the boat is at the origin $(0,0,0)$.


\begin{figure}[H]
\centering
\includegraphics[width=8cm]{boat.pdf}
\caption{The boat and the two coordinate systems}
\end{figure}


\begin{problem}
Galileo has climbed up to the top of the mast, and drops a ball down to the deck at $t = 0$, letting it fall straight down.

You both measure that it takes the same time, $T$, for the ball to hit the deck, and you both see it hit the same spot on the deck - right at the bottom of the mast.

What are the coordinates $(t,x,y,z)$ of the ball hitting the boat, by Galileo's measurements?
\end{problem}
\begin{solution}
He measures $(T,0,0,0)$ - it reaches the origin at time $T$.
\end{solution}

\begin{problem}
What are the coordinates $(t',x',y',z')$ of the ball hitting the boat, by your measurements on the shore?
\end{problem}
\begin{solution}
You measure $(T,vT,0,0)$, as the time is still $T$, but the origin has moved $vT$ further along the $x$-axis.

\end{solution}


\begin{problem}
In general, if Galileo measures something happening at time $t$ and position $(x,y,z)$, what are the coordinates $(t',x',y',z')$ you measure?
\end{problem}
\begin{solution}
In general, $(t',x',y',z') = (t,x + vt, y, z)$, as you will agree on measurements of time and the $y,z$-axes, but the boat will have moved a distance $vt$ along the $x$-axis, adding $vt$ to his $x$-measurement.
\end{solution}

\begin{problem}
Say that an object on the boat is moving at velocity $\bar v = (v_x, v_y, v_z)$ if its velocity in the $x$-direction is $v_x$, its velocity in the $y$-direction is $v_y$, and its velocity in the $z$-direction is $v_z$, per Galileo's measurements. What is the velocity $\bar v' = (v_x', v_y', v_z')$ that you measure?
\end{problem}
\begin{solution}
You will measure $\bar v' = \bar v + (v,0,0)$, as the $x$-velocity will be increased by $v$, and other velocities will be unchanged.
\end{solution}

\section{Time Dilation}
It's 1905, in Switzerland. You're standing on the platform of a train station, while your friend Albert Einstein is standing on a train moving along the $x$-axis at velocity $v$, holding a device called a \emph{light clock}. Recent experiments have shown that the speed of light is a physical constant, that everyone will measure the same - let's call this $c$. We will see the consequences of this. 

As in the case of the boat, the $z$-direction is up, and the $y$-direction is perpendicular to the train tracks.

\begin{figure}[H]
\centering
\includegraphics[height=6cm]{Einstein train (1).pdf}
\caption{The train and the two coordinate systems}
\end{figure}

In the light clock, a beam of light is sent up distance $L$ and bounced off a mirror down to a detector at the point it started from. Assume that in Einstein's coordinates $(t,x,y,z)$, and yours $(t',x',y',z')$, the light leaves the detector at $(0,0,0,0)$.

\begin{figure}[H]
\centering
\includegraphics[height=6cm]{light clock 1.pdf}
\caption{The light clock from Einstein's perspective}
\end{figure}

\begin{figure}[H]
\centering
\includegraphics[height=6cm]{light clock 2.pdf}
\caption{The light clock from the perspective of the platform}
\end{figure}


\begin{problem}
Let $T$ be the time Einstein measures when the light returns to the detector, and let $T'$ be the time that you measure when light returns to the detector. If you both measure the same constant speed of light $c$, then what is $\frac{T'}{T}$? Let us call this ratio $\gamma$.

(Hint: Measure the distance the light travels, from each perspective, to solve for the amount of time.)
\end{problem}
\begin{solution}
The distance Einstein measures the light moving at should be $cT$, and the distance you measure should be $cT'$.

The distance Einstein measures as the light goes up and down is just $2L$. To you, as the light goes up and down, it also moves $vT'$ to the right, so the distance is $2\sqrt{(vT'/2)^2 + L^2} = \sqrt{(vT')^2 + (2L)^2} = cT'$. We thus find that
$$(c^2 - v^2)T'^2 = (2L)^2 = (cT)^2,$$
so
$$\gamma = \frac{T'}{T} = \frac{c}{\sqrt{c^2 - v^2}} = \frac{1}{\sqrt{1 - \left(\frac{v}{c}\right)^2}}$$
\end{solution}

This may seem incredibly counter-intuitive, as in our normal world, we assume everyone perceives time the same way, but we now find that time seems to be moving at different speeds (this is called \emph{time dilation}). Let's see how much of an effect this would have on normal daily life:

\begin{problem}
The speed of light $c$ is approximately $300,000,000$ meters per second. Most humans never travel faster than the speed of a commercial airplane, which maxes out at about $1000$ kilometers per hour. (Approximately) calculate $\gamma$ for that speed, and convince yourself that no one would ever notice this time dilation effect in daily life on earth.
\end{problem}
\begin{solution}
This would be $\gamma = \frac{1}{\sqrt{1 - (v/c)^2}} = \frac{1}{\sqrt{1 - 300000^{-2}}} \approx 1 + \frac{1}{300000}.$ An absolutely tiny difference.
\end{solution}

\begin{problem}
Say that the train is moving incredibly fast, at say $c/2$. How big is $\gamma$, and who perceives the light clock as ticking faster, you or Einstein?
\end{problem}
\begin{solution}
We find $\gamma = \frac{1}{\sqrt{1 - 1/4}}\approx 1.15$. This is greater than 1, so you will find that the light clock is ticking $15\%$ more slowly.
\end{solution}

\section{Length Contraction}
Having seen that strange things happen to the perception of time, let's see what happens to space.

\begin{problem}
Let's say that Einstein rotates the light clock, so that now it is pointing horizontally along the $x$-axis - the direction of motion of the train. This will end up affecting your measurement of the length of the light clock, but by how much?

Say that Einstein measures the length of the light clock to be $L$, and you measure it to be $L'$. Then suppose he starts the light clock at $t = t' = 0$, while the source of the light is at $x = x' = 0$, you see the light hit the other end at time $t' = T_1'$, and return to the detector at time $t' = T_2'$.

\begin{itemize}
    \item Draw a picture of this setup, from each perspective.
    \item What is the $x'$-position of the light when it hits the mirror at time $T_1'$? Solve for $T_1'$ in terms of $L'$ and $v$.
    \item What is the $x'$-position of the light when it returns to the detector at time $T_2'$?
    \item At what time does Einstein see the light return to the detector?
    \item Using our time dilation formula, at what time do you see the light return to the detector?
    \item Solve for the total distance the light travelled (by your measurement), and thus $L'/L$.
\end{itemize}
\end{problem}
\begin{solution}
\begin{itemize}
    \item You will measure $x' = L' + vT_1'$, as the light will have moved across the clock of length $L'$, plus the distance the train has moved, which is $vT_1'$. We find that $L' + vT_1' = cT_1'$, so $T_1' = \frac{L'}{c - v}$.
    \item It'll have moved to $vT_2'$ in time $T_2' - T_1'$. Thus $L' + vT_1' - vT_2' = c(T_2' - T_1')$, and $T_2' - T_1' = \frac{L'}{c + v}$.
    \item He just sees it traverse a distance of $2L$, so $T_2 = \frac{2L}{c}$.
    \item You'll measure $T_2' = \gamma T_2 = \frac{\gamma 2L}{c}$.
    \item The light will have moved a total distance of $c(T_1' + (T_2' - T_1')) = L'\left(\frac{1}{c- v} + \frac{1}{c + v}\right) = \frac{2cL'}{c^2 - v^2} = cT_2'$, and $T_2' = \frac{\gamma 2 L}{c} = \frac{2L}{\sqrt{c^2 - v^2}}$. Thus $\frac{L'}{L} = \frac{\sqrt{c^2 - v^2}}{c} = \frac{1}{\gamma}$.
\end{itemize}
\end{solution}
We call the effect observed in this experiment \emph{length contraction}. It is worth noting that nothing changes about distance in the $y$- or $z$-directions - the change only happens in the direction of motion.

\begin{problem}
We've seen what happens when you measure objects that Einstein keeps on the train.
If instead you're standing on the platform with a meterstick along the $x$-axis, how long does Einstein see it as?
\end{problem}
\begin{solution}
Einstein sees you as moving at velocity $-v$, because you're moving in the opposite direction. He'll observe the same length contraction, with $\gamma = \frac{c}{\sqrt{c^2 - (-v)^2}} = \frac{c}{\sqrt{c^2 - v^2}}$, the same factor as you see. Thus he sees a meterstick on the platform as having length $\frac{1}{\gamma}$ meters.
\end{solution}

\section{Muons}
Muons are tiny particles - about 200 times the mass of an electron. They are formed when cosmic rays hit Earth's atmosphere (about 10km up), and they then fly towards Earth at preposterously high speeds, about $0.995c$. They also decay extremely quickly - the average one lasts about $2 \times 10^{-6}\mathrm{s}$, which is shorter than the amount of time it takes to traverse Earth's atmosphere, even at that high speed. Nonetheless, lots of muons survive to make it to detectors at or near sea level.

\begin{problem}
What is $\gamma$ at this high speed? Is this value big enough to make a substantial difference?
\end{problem}
\begin{solution}
We find that $\gamma = \frac{1}{\sqrt{1 - (v/c)^2}} \approx \frac{1}{\sqrt{1 - 0.995^2}} \approx 10$. This is huge.
\end{solution}

\begin{problem}
From the reference frame of a scientist at sea level, using relativity, explain why more muons than expected reach the detectors.
\end{problem}
\begin{solution}
The travel time we observe, $T'$, is $\gamma T$, where $T$ is the travel time the muon observes. While $T'$ is greater than the average time a muon lasts, $T = \frac{1}{\gamma}T'\approx \frac{1}{10}T'$, which is a much shorter shelf life, so more muons remain.
\end{solution}

\begin{problem}
From the reference frame of a flying muon, use relativity to explain why more muons than expected reach the detectors.
\end{problem}
\begin{solution}
The distance we observe is about 10km, but the muon will observe a contracted distance of $\frac{1}{\gamma}10\,\mathrm{km} \approx 1\,\mathrm{km}$, which is a shorter trip, so more muons remain.
\end{solution}

\begin{problem}[Optional]
Given that muons at rest have a half-life around $1.5 \times 10^{-6}\,\mathrm{s}$, calculate what fraction of the muons released at 10km altitude would reach Earth not assuming special relativity, and compare with the fraction would reach Earth assuming special relativity.
\end{problem}
\begin{solution}

\end{solution}

\section{Simultaneity}
Now assume that at time $t = t' = 0$, from a position you both agree is $x = x' = 0$, Einstein fires two beams of light from the origin in opposite directions along the $x$-axis, to detectors at position $(-L,0,0)$ and $(L,0,0)$. Clearly to him, the beams will reach the detectors simultaneously.

\begin{problem}
According to your measurements, at what time does the light reach the detector on the left?
\end{problem}
\begin{solution}
Similar to our answers from the previous light clock experiment, this will happen at time $t' = \frac{L'}{c + v} = \frac{ L}{\gamma(c + v)}$.
\end{solution}

\begin{problem}
According to your measurements, at what time does the light reach the detector on the right?
\end{problem}
\begin{solution}
Similar to our answers from the previous light clock experiment, this will happen at time $t' = \frac{L'}{c - v} = \frac{L}{\gamma(c - v)}$.
\end{solution}

\begin{problem}
What is the difference between these measurements? Are they simultaneous? If not, which occurs first?
\end{problem}
\begin{solution}
The difference is $\frac{L}{\gamma}\left(\frac{1}{c - v} - \frac{1}{c + v}\right) = L\frac{2v}{c^2 - v^2} = 2L\frac{v\gamma}{c^2}$.

These are not simultaneous, as that difference is nonzero. The beam on the left arrives first, as it is assisted by the movement of the train.
\end{solution}

\begin{problem}
How does the difference in time (as measured by you) relate to the difference in space (as measured by Einstein)?
\end{problem}
\begin{solution}
It is proportional to the distance $2L$ measured by Einstein, with proportionality $\frac{v\gamma}{c^2}$.
\end{solution}

\section{Lorentz Transformations}
We can now find a relativistic analog for the equation
$$(t',x',y',z') = (t,x+vt, y,z)$$
found in Galilean relativity.

Throughout, we will assume that at time $t = t' = 0$, you and Einstein agree on the location of the origin $(x,y,z) = (x',y',z')$, and that at all times, $y' = y$ and $z' = z$. Thus we'll just focus on calculating $(t',x')$ in terms of $(t,x)$ and vice versa.

Now say that an event happens along the $x$-axis, and Einstein measures its coordinates as $(t,x)$, while you measure its coordinates as $(t',x')$.

\begin{problem}
Based on what you observe at time $t'$, find a formula for $x'$ in terms of $x$ and $t'$. Solve for $x$ in terms of $(t',x')$.
\end{problem}
\begin{solution}
At time $t' = 0$, you will see Einstein's origin at $vt'$, and the event at distance $\frac{x}{\gamma}$ away from that, by length contraction. Thus $x' = vt' + \frac{x}{\gamma}$, and $x = \gamma(x' - vt')$.
\end{solution}

\begin{problem}
When Einstein observes the event at time $t$, how far away is the event from the origin in your coordinates, according to his measurements?

Find a formula for $x'$ in terms of $t$ and $x$.
\end{problem}
\begin{solution}
This will be the same as the last problem, but with $v$ replaced with $-v$, as Einstein sees you as moving at velocity $-v$, so we'll get $x' = \gamma(x + vt)$.

Einstein will see the distance between your origin and his as $vt$, and the distance between his origin and the event as $x$, so he'll measure the whole distance as $x + vt$ - by length contraction, he should assume the distance is $\gamma(x + vt)$ in your frame of reference.
\end{solution}

\begin{problem}
Solve for $(t',x')$ in terms of $(t,x)$.
\end{problem}
\begin{solution}
We know that $x' = \gamma(x + vt)$, and $x' = vt' + \frac{x}{\gamma}$, so
\begin{align*}
    t' &= \frac{1}{v}\left(\gamma(x + vt) - \frac{x}{\gamma}\right)\\
&= \gamma t + \frac{1}{v}(\gamma - \frac{1}{\gamma})x\\
&=\gamma t + \frac{\gamma^2 - 1}{\gamma v}x\\
&= \gamma (t + \frac{v}{c^2}x)
\end{align*}

Thus we get
$$(t',x') = \gamma\left(t + \frac{v}{c^2}x, x + vt\right).$$
\end{solution}

This transformation, turning $(t,x)$ into $(t',x')$ or vice versa, is called a \emph{Lorentz transformation}, after Hendrik Lorentz, who discovered a lot of this before Einstein.

\begin{problem}
Solve for $(t,x)$ in terms of $(t',x')$. Show that this Lorentz transformation is the same as the previous one, but swapping the sign on $v$.
\end{problem}
\begin{solution}
We will get
$$(t,x) = \gamma\left(t - \frac{v}{c^2}x, x - vt\right).$$
\end{solution}

\begin{problem}
Show that if $v$ is much, much smaller than $c$, then $(t',x') \approx (t,x + vt)$, showing that for very low speeds $v$, Einsteinian relativity is basically the same as Galilean relativity.
\end{problem}
\begin{solution}
First, we observe that for low $v$, $\gamma \approx 1$. Thus $(t',x') = \gamma\left(t + \frac{v}{c^2}x, x + vt\right) \approx \left(t + \frac{v}{c^2}x, x + vt\right)$. The only remaining term of difference is $\frac{v}{c^2}x$, which will be miniscule if $v$ is much smaller than $c$. 
\end{solution}

\begin{problem}
Show that this transformation preserves the quantity $- (ct)^2 + x^2 + y^2 + z^2$.
\end{problem}
\begin{solution}
The quantities $y$ and $z$ don't change, so we'll just show $x'^2 - (ct')^2 = x^2 - (ct)^2$.

\begin{align*}
    x'^2 - (ct')^2
    &= \gamma^2\left( (x + vt)^2 - (ct + \frac{v}{c}x)^2\right)\\
    &= \gamma^2\left((1-(v/c)^2)x^2 + (v - c)^2t^2\right)\\
    &= x^2 - c^2t^2
\end{align*}
\end{solution}

\begin{problem}[Optional: uses matrices]
Write the transformation sending $(t,x,y,z)$ to $(t',x',y',z')$ as a $4 \times 4$ matrix.
\end{problem}


\begin{problem}
Suppose Einstein sees another train go by on a parallel track at velocity $u$. What velocity do you measure this train at?
\end{problem}
\begin{solution}
Use composition of Lorentz transformations. Written in matrices, if the speed you measure is $w$, we have
\begin{align*}
    \gamma_w\begin{bmatrix}
1 & w/c^2 \\
w & 1
\end{bmatrix} 
&= \gamma_u\begin{bmatrix}
1 & u/c^2 \\
u & 1
\end{bmatrix}\gamma_v\begin{bmatrix}
1 & v/c^2 \\
v & 1
\end{bmatrix}\\
&= \gamma_u\gamma_v\begin{bmatrix}
1 + uv/c^2 & (u + v)/c^2 \\
u + v & 1 + uv/c^2
\end{bmatrix}\\
\end{align*}
so $\gamma_w = \gamma_u\gamma_v(1+uv/c^2)$, and $\gamma_w w = \gamma_u\gamma_v (u + v)$, so $w = \frac{u + v}{1 + uv/c^2}$.


\end{solution}
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