1 Solvable Groups

Recall that a subgroup H of a group G is called normal if $ghg^{-1} = h$ for all $h \in H$ and all $g \in G$. We write $H \triangleleft G$ when H is a normal subgroup of G.

Definition 1 A group G is called solvable (or soluble) if there exist subgroups

$$\{e\} \triangleleft G_1 \triangleleft G_2 \triangleleft \ldots \triangleleft G_n \triangleleft G$$

such that the quotients G/G_{n-1}, G_{n-1}/G_{n-2}, ..., G_2/G_1, and $G_1/\{e\}$ are all abelian. (Usually, the trivial group is denoted G_0 and G itself is denoted G_n.)

Problem 1

- Show that every abelian group is solvable.

 Solution: If G is abelian, then every subgroup (in particular the trivial one) is normal, so we have $\{e\} \triangleleft G$.

- Show that the permutation group S_3 is solvable.

 Solution: $\{e\} \triangleleft \{e, (123), (132)\} \triangleleft S_3$. (The group in the middle is $\mathbb{Z}/3$, which is abelian.)

- (Challenge) Show that S_4 is solvable.

 Solution: $\{e\} \triangleleft \{e, (12)(34), (13)(24), (14)(23)\} \triangleleft A_4 \triangleleft S_4$ (see below for definition of A_4).

- Show that any subgroup of a solvable group is solvable.

 Solution: Let H be a subgroup of G, and suppose G is solvable, and take $\{e\} = G_0 \triangleleft \ldots \triangleleft G_n = G$ as in the definition. Then $\{e\} = G_0 \cap H \triangleleft \ldots \triangleleft G_n \cap H = H$, and all the quotients $(G_j \cap H)/(G_{j-1} \cap H)$ are still abelian.
As Problem 1 shows, most groups that we could possibly think of are solvable. The most important example of a non-solvable group, and also the smallest, is the following group with 60 elements (think about why it has 60 elements!)

Definition 2 To every permutation $\sigma \in S_n$, written in cycle notation, associate with it a number as follows:
- To a k-cycle, associate the number $k - 1$.
- To the product of two permutations, associate the sum of their numbers.

σ is called **even** if this number is even, and **odd** if this number is odd.

Let A_n be the subset of S_n containing all the even permutations.

Problem 2 Show that A_n is a subgroup of S_n.

Solution: Since A_n is a subset of S_n, we need to check that it is closed under composition of permutations. But this is by definition: since the sum of two even numbers is even, the composition of two even permutations is still even.

A_n is called the alternating group on n elements (recall that S_n is called the symmetric group).

Theorem 1 For $n \geq 5$, A_n is simple - that is, it has no normal subgroups besides the trivial subgroup and itself.

Problem 3 Show that A_5 is not solvable. Then show that S_5 is not solvable.

Solution: Suppose A_5 were solvable. Then there is a sequence $\{e\} = G_0 \triangleleft \ldots \triangleleft G_n = A_5$. But A_5 is simple, so G_{n-1} is either trivial or A_5, and so on - there is some j such that G_j is trivial and G_{j+1} is A_5. But then $G_{j+1}/G_j = A_5$ which is not abelian, which is a contradiction. Therefore A_5 is not solvable, and since subgroups of solvable groups are solvable, S_5 cannot be solvable either.
2 The Abel-Ruffini Theorem

Last week we showed how to extend \(\mathbb{Q} \) to larger number systems. The same process can be used to extend an extension of \(\mathbb{Q} \), and so on.

Problem 4 Suppose that \(L \) is an extension of \(K \) and \(M \) is an extension of \(L \) (and therefore also an extension of \(K \)). Show that \(\text{Gal}(M/L) \triangleleft \text{Gal}(M/K) \).

Solution: Let \(h \in \text{Gal}(M/L) \), and \(g \in \text{Gal}(M/K) \). Then \(h(y) = y \) for all \(y \in L \), so for all \(x \in L \), \(g^{-1}(x) \in L \), so that \(g(h(g^{-1}(x)))) = g(g^{-1}(x)) = x \), so that \((g \circ h \circ g^{-1})(x) = x \) for all \(x \in L \), or in other words, \(ghg^{-1} \in \text{Gal}(M/L) \), and therefore this forms a normal subgroup.

Problem 5 Let \(K, L, M \) be as in the previous problem. Show that \(\text{Gal}(M/K) / \text{Gal}(M/L) = \text{Gal}(L/K) \).

Solution: \(f, g \in \text{Gal}(M/K) \) are equivalent under \(\text{Gal}(M/L) \) if they are the same function on \(L \), as their behavior outside can be modified by the normal subgroup. Therefore equivalence classes in the left-hand side are represented by automorphisms of \(L \) over \(K \), which is exactly the right-hand side.

Problem 6 Show that for any number system \(K \), \(\text{Gal}(K/K) \) is the trivial group.

Solution: By definition, if \(f \in \text{Gal}(K/K) \), then \(f(x) = x \) for all \(x \in K \), or in other words, \(f \) is the identity function, so this is the only element of \(\text{Gal}(K/K) \).

We also state the following useful theorem (try to think about how you would prove this!)

Theorem 2 If \(L = K(\sqrt[n]{\alpha}) \), where \(\alpha \in K \) and this is any \(n^{th} \) root of \(\alpha \) (i.e. using any \(n^{th} \) root of unity), then \(\text{Gal}(L/K) \) is cyclic.
Definition 3 A polynomial is said to be **solvable in radicals** if there is a formula for each of its roots in terms of rational numbers and addition, subtraction, multiplication, division, and taking n^{th} roots.

Problem 7 Suppose that p is a polynomial which is irreducible over \mathbb{Q} and solvable in radicals. Let x be a root of p.

- Let K be a splitting field for p. Show that there is a sequence
 $$\mathbb{Q} = K_0 \subseteq K_1 \subseteq K_2 \subseteq \ldots \subseteq K_{n-1} \subseteq K_n = K$$
 where each K_j is an extension of K_{j-1} by the n^{th} root of an element of K_{j-1}. (Hint: Since p is solvable in radicals, x can be written in radicals, so construct K_1, K_2, \ldots in a way that undoes all the radicals in the formula for x.)

 Solution: Let $K_0 = \mathbb{Q}$, and let $K_1 = \mathbb{Q}(\alpha)$, where α is the innermost radical in the expression for x. Then let $K_2 = \mathbb{Q}(\beta)$ for the next outermost radical β, and so on, until all the radical expressions are adjoined in this way - by definition the final term $K_n \ni x$ so $K_n = K$ is a splitting field.

 For example, the cubic formula gives
 $$x = \sqrt[3]{-\frac{q}{2} + \sqrt{\frac{q^2}{4} + \frac{p^3}{27}}} + \sqrt[3]{-\frac{q}{2} - \sqrt{\frac{q^2}{4} + \frac{p^3}{27}}}$$

 We would have, in this case
 $$K_0 = \mathbb{Q}$$
 $$K_1 = \mathbb{Q} \left(\sqrt[3]{\frac{q^2}{4} + \frac{p^3}{27}} \right)$$
 $$K_2 = K_1 \left(\sqrt[3]{-\frac{q}{2} + \sqrt{\frac{q^2}{4} + \frac{p^3}{27}}} \right)$$

 Note that, in this case, only one of the cube roots (u, v) is needed, because we have $v = -q - w^3$.

- Use this sequence and Problem 4 to obtain a sequence of normal subgroups of $\text{Gal}(K/\mathbb{Q})$.

 Solution: $\{e\} = \text{Gal}(\mathbb{Q}/\mathbb{Q}) \triangleleft \text{Gal}(K_1/\mathbb{Q}) \triangleleft \ldots \triangleleft \text{Gal}(K_n/\mathbb{Q}) = \text{Gal}(K/\mathbb{Q})$

- Conclude that $\text{Gal}(K/\mathbb{Q})$ is solvable.

 Solution: By Problem 5, each quotient above is $\text{Gal}(K_{j+1}/\mathbb{Q})/\text{Gal}(K_j/\mathbb{Q}) = \text{Gal}(K_{j+1}/K_j)$. By Theorem 2, each of these is cyclic, so since all cyclic groups are abelian, each quotient in the above sequence is abelian, so that $\text{Gal}(K/\mathbb{Q})$ is solvable.

Problem 7 proves one direction of the famous Abel-Ruffini Theorem. The converse is also true, but is much trickier to prove so we shall not do so this week. To summarize, we have

Theorem 3 (Abel-Ruffini) A polynomial p is solvable in radicals if and only if its Galois group is solvable.
Problem 8
• Using the fact that the cubic formula exists, prove that S_3 is solvable.

Solution: By the existence of the cubic formula and the fact that the cubic $x^3 - 2$ (for instance, this is the example from last week) has Galois group S_3, S_3 is solvable.

• Using the fact that S_4 is solvable (see Problem 1), prove that there exists a quartic formula.

Solution: Let p be any quartic. If p is reducible, then it clearly has a formula by the existence of quadratic and cubic formulas. If p is irreducible, then its Galois group G is a subgroup of S_4, which is solvable, so by Problem 1 G is solvable, so p is solvable in radicals.

• Can we immediately rule out the existence of a quintic formula? Why or why not?

Solution: No. It might be the case that no irreducible quintic has Galois group S_5 or A_5.

3 Transitive Subgroups and Quintics

So far we have restricted attention to irreducible polynomials, and it wasn’t entirely clear why. There are a few proofs on this and the previous worksheet which require irreducibility (go back and see how), but the most important application is that it forces a certain property on the Galois group - the Galois group can’t just be any subgroup of S_n.

Definition 4 A subgroup G of S_n is transitive if any for two different numbers $1 \leq j, k \leq n$ there exists a permutation $\sigma \in G$ such that $\sigma(j) = k$.

Problem 9 Let p be an irreducible degree n polynomial. Prove that its Galois group is a transitive subgroup of S_n. (Hint: If it weren’t transitive, there would be roots r_j and r_k which cannot be mapped to each other by the Galois group. Consider the set of roots which are mapped to from r_j, which is now missing some r_k, and use this set of roots to create a nontrivial factor of p.)

Solution: Suppose it were not transitive, so there exist roots r_j and r_k which are not mapped to each other. Let $r_{j_1}, ..., r_{j_l}$ be the roots which are mapped to from r_j, so that this set does not include r_k. It is nonempty, since r_j is in the set (it is mapped from r_j by the identity permutation), and it does not contain all the roots, so taking the product $f(x) = (x - r_{j_1})...(x - r_{j_l})$ gives a nonconstant polynomial with a smaller degree than p. But since all of the roots of f are roots of p, p is divisible by f, which contradicts the fact that p is irreducible.
Problem 10 Consider the polynomial \(p(x) = x^5 - 13x - 13 \), and let \(G \) be its Galois group.

- Using Eisenstein’s Criterion (recall from last quarter), show that \(p \) is irreducible over \(\mathbb{Q} \).
 Solution: \(p = 13 \).

- Show that \(G \) contains a transposition (a 2-cycle). (Hint: You may use the fact that \(p \) has exactly three real roots - this can be seen by graphing it.)
 Solution: The transposition is given by complex conjugation, which switches the two non-real roots and fixes the three real roots.

- Show that \(G \) contains all ten transpositions in \(S_5 \). (Hint: Say you have the transposition \(g = (12) \). By transitivity there exists some \(h \) such that \(h(2) = 3 \), so what can \(hgh^{-1} \) possibly be? Repeat this process until you’ve shown that \((13) \in G \). Then do this again for \((14), (15) \in G \). Now can you get the other six transpositions in \(G \)?)
 Solution: Without loss of generality, complex conjugation represents the permutation \(g = (12) \). Let \(h \) be some permutation such that \(h(2) = 3 \). When finding \(hgh^{-1} \), \(g \) will only affect \(h(1) \) and \(h(2) \), the latter which is given to be 3 - any other numbers are unaffected by \(g \) and therefore unaffected by \(hgh^{-1} \). So \(hgh^{-1} \) is the transposition which switches 3 with 5 - any other numbers are unaffected by \(g \) and therefore unaffected by \(hgh^{-1} \). If \(h(1) = 1 \), then \((13) \in G \). If \(h(1) = 2 \), then \((23)(12)(23) = (13) \in G \). If \(h(1) = 4 \), then we find another permutation \(i \) such that \(i(2) = 5 \), and repeat this argument, eventually finding that \((13) \in G \) in this case as well (and similarly, also when \(h(1) = 5 \)). Therefore \((13) \in G \), and a similar argument now shows \((14) \in G \) and \((15) \in G \), and a similar argument also shows that since \((12) \in G \), \((23), (24), (25) \in G \), and so on for the others.

- Show that the transpositions generate \(S_5 \); that is, every permutation in \(S_5 \) can be written as a product of transpositions. (Hint: Every permutation can be written in cycle notation. Can you write a cycle as a product of transpositions?)
 Solution: Any cycle \((a_1...a_n)\) can be written as \((a_2a_3)...(a_{n-1}a_n)(a_1a_n)\), so any permutation can be written as transpositions by writing each of its cycles this way.

- Conclude that \(p \) is not solvable in radicals, and therefore that there is no quintic formula.
 Solution: The above shows that \(G \) contains every permutation on 5 elements, so \(G \) is \(S_5 \), which is not solvable, so \(p \) is not solvable in radicals by Abel’s Theorem.