Vector Geometry

Lesson 3

Back to vector algebra

Problem 1 For the given vector \vec{v} and point A, construct the vector $\vec{w}=\vec{v}$ having A as its initial point on the graph paper below. Use the grid instead of a compass and ruler.

Problem 2 For the given vector \vec{v} and point A, construct the vector $\vec{w}=-\vec{v}$ having A as its initial point on the graph paper below.

Problem 3 For the given vector \vec{v} and point A, construct the vector $\vec{w}=1.5 \vec{v}$ having A as its initial point on the graph paper below.

Problem 4 For the given vector \vec{v} and point A, construct the vector $\vec{w}=-2 \vec{v}$ having A as its initial point on the graph paper below.

Problem 5 For the given vector \vec{v} and point A, construct the vector $\vec{w}=-\frac{1}{3} \vec{v}$ having A as its initial point on the graph paper below.

Problem 6 For the given vectors \vec{v} and \vec{w}, construct the vector $\vec{w}+\vec{v}$ on the graph paper below.

Problem 7 For the given vectors \vec{v} and \vec{w}, construct the vector $\vec{w}-\vec{v}$ on the graph paper below.

Problem 8 For the given vectors \vec{v} and \vec{w}, construct the vector $2 \vec{v}-3 \vec{w}$ on the graph paper below.

Problem 9 For the given vectors \vec{v} and \vec{w}, construct the vector $1.75 \vec{v}-\frac{2}{3} \vec{w}$ on the graph paper below.

Problem 10 For the given vectors \vec{v} and \vec{w}, construct the vector $\vec{v}+\vec{w}$ originating at the same point as the vector \vec{v} and the vector $\vec{w}+\vec{v}$ originating at the same point as the vector \vec{w}. Is $\vec{v}+\vec{w}=\vec{w}+\vec{v}$? Why or why not?

Problem 11 A man is crossing a river in a boat. The speed of the boat is 5 meters per second. The speed of the water in the river is 3 meter per second. In what direction should the man steer the boat, if he wants the vessel to move perpendicular to the banks? To answer this question, please use a compass and a ruler to construct the velocity vector. Hint: use the Pythagorean theorem.
\qquad

The width of the river is 8 meters. How long would it take the man to cross the river?

