Polynomials IV - Abel's Theorem and Applications

Yan Tao

March 2022

1 Solvable Groups

Recall that a subgroup H of a group G is called *normal* if $ghg^{-1} = h$ for all $h \in H$ and all $g \in G$. We write $H \triangleleft G$ when H is a normal subgroup of G.

Definition 1 A group G is called **solvable** (or **soluble**) if there exist subgroups

 $\{e\} \triangleleft G_1 \triangleleft G_2 \triangleleft \ldots \triangleleft G_{n-1} \triangleleft G$

such that the quotients G/G_{n-1} , G_{n-1}/G_{n-2} , ..., G_2/G_1 , and $G_1/\{e\}$ are all abelian. (Usually, the trivial group is denoted G_0 and G itself is denoted G_n .)

Problem 1 • Show that every abelian group is solvable.

- Show that the permutation group S_3 is solvable.
- (Challenge) Show that S_4 is solvable.
- Show that any subgroup of a solvable group is solvable.

As Problem 1 shows, most groups that we could possibly think of are solvable. The most important example of a non-solvable group, and also the smallest, is the following group with 60 elements (think about why it has 60 elements!)

Definition 2 To every permutation $\sigma \in S_n$, written in cycle notation, associate with it a number as follows:

- To a k-cycle, associate the number k 1.
- To the product of two permutations, associate the sum of their numbers.

 σ is called **even** if this number is even, and **odd** if this number is odd.

Let A_n be the subset of S_n containing all the even permutations.

Problem 2 Show that A_n is a subgroup of S_n .

 A_n is called the *alternating group* on n elements (recall that S_n is called the *symmetric group*).

Theorem 1 For $n \ge 5$, A_n is simple - that is, it has no normal subgroups besides the trivial subgroup and itself.

Problem 3 Show that A_5 is not solvable. Then show that S_5 is not solvable.

2 The Abel-Ruffini Theorem

Last week we showed how to extend \mathbb{Q} to larger number systems. The same process can be used to extend an extension of \mathbb{Q} , and so on.

Problem 4 Suppose that L is an extension of K and M is an extension of L (and therefore also an extension of K). Show that $Gal(M/L) \triangleleft Gal(M/K)$.

Problem 5 Let K, L, M be as in the previous problem. Show that Gal(M/K)/Gal(M/L) = Gal(L/K).

Problem 6 Show that for any number system K, Gal(K/K) is the trivial group.

We also state the following useful theorem (try to think about how you would prove this!)

Theorem 2 If $L = K(\sqrt[n]{\alpha})$, where $\alpha \in K$ and this is any n^{th} root of α (i.e. using any n^{th} root of unity), then Gal(L/K) is cyclic.

Definition 3 A polynomial is said to be **solvable in radicals** if there is a formula for each of its roots in terms of rational numbers and addition, subtraction, multiplication, division, and taking n^{th} roots.

Problem 7 Suppose that p is a polynomial which is irreducible over \mathbb{Q} and solvable in radicals. Let x be a root of p.

• Let K be a splitting field for p. Show that there is a sequence

 $\mathbb{Q} = K_0 \subseteq K_1 \subseteq K_2 \subseteq \ldots \subseteq K_{n-1} \subseteq K_n = K$

where each K_j is an extension of K_{j-1} by the n^{th} root of an element of K_{j-1} . (Hint: Since p is solvable in radicals, x can be written in radicals, so construct $K_1, K_2, ...$ in a way that undoes all the radicals in the formula for x.)

• Use this sequence and Problem 4 to obtain a sequence of normal subgroups of $Gal(K/\mathbb{Q})$.

• Conclude that $Gal(K/\mathbb{Q})$ is solvable.

Problem 7 proves one direction of the famous Abel-Ruffini Theorem. The converse is also true, but is much trickier to prove so we shall not do so this week. To summarize, we have

Theorem 3 (Abel-Ruffini) A polynomial p is solvable in radicals if and only if its Galois group is solvable.

Problem 8 • Using the fact that the cubic formula exists, prove that S_3 is solvable.

- Using the fact that S_4 is solvable (see Problem 1), prove that there exists a quartic formula.
- Can we immediately rule out the existence of a quintic formula? Why or why not?

3 Transitive Subgroups and Quintics

So far we have restricted attention to irreducible polynomials, and it wasn't entirely clear why. There are a few proofs on this and the previous worksheet which require irreducibility (go back and see how), but the most important application is that it forces a certain property on the Galois group - the Galois group can't just be any subgroup of S_n .

Definition 4 A subgroup G of S_n is **transitive** if any for two different numbers $1 \le j, k \le n$ there exists a permutation $\sigma \in G$ such that $\sigma(j) = k$.

Problem 9 Let p be an irreducible degree n polynomial. Prove that its Galois group is a transitive subgroup of S_n . (Hint: If it weren't transitive, there would be roots r_j and r_k which cannot be mapped to each other by the Galois group. Consider the set of roots which are mapped to from r_j , which is now missing some r_k , and use this set of roots to create a nontrivial factor of p.)

Problem 10 Consider the polynomial $p(x) = x^5 - 13x - 13$, and let G be its Galois group.

- Using Eisenstein's Criterion (recall from last quarter), show that p is irreducible over \mathbb{Q} .
- Show that G contains a transposition (a 2-cycle). (Hint: You may use the fact that p has exactly three real roots this can be seen by graphing it.)

• Show that G contains all ten transpositions in S_5 . (Hint: Say you have the transposition g = (12). By transitivity there exists some h such that h(2) = 3, so what can hgh⁻¹ possibly be? Repeat this process until you've shown that $(13) \in G$. Then do this again for $(14), (15) \in G$. Now can you get the other six transpositions in G?)

• Show that the transpositions generate S_5 ; that is, every permutation in S_5 can be written as a product of transpositions. (Hint: Every permutation can be written in cycle notation. Can you write a cycle as a product of transpositions?)

• Conclude that p is not solvable in radicals, and therefore that there is no quintic formula.