Problems

1. Find $2^{1000^{1000}}$ in mod 7.
2. Find $2^{1000^{1000}}$ in mod 15.
3. Find the last three digits of the number 2013^{1000}.
4. Find the last three digits of the number 2017^{2017}.
5. (Canada MO 2003) Find the last three digits of the number $2003^{2002^{2001}}$.
6. (JBMO-2007) Let p be a prime number. Show that $7p + 3^p - 4$ is not a perfect square.
7. A number m in mod n is called perfect square if there exist an integer x such that $m \equiv x^2 \mod n$. For example, 0, 1, 4 are perfect squares in mod 5, and 0, 1, 2, 4 are perfect squares in mod 7. Find the total number of perfect squares in mod 25.
8. For which n, there exist complete residue class $a_0, a_1, \ldots, a_{n-1}$ in mod n so that $a_0, a_1 + 1, \ldots, a_{n-1} + n - 1$ is also a complete residue class?
9. For which n, there exist complete residue class $a_0, a_1, \ldots, a_{n-1}$ in mod n so that $a_0, a_1 + 3, a_2 + 6, \ldots, a_{n-1} + 3(n - 1)$ is also a complete residue
10. Let \(p > 2 \) be a prime number. Is there a complete residue class \(\{a_1, \ldots, a_{p-1}\} = \{1, 2, 3, \ldots, p-1\} \mod p \) so that \(a_1, 2a_2, 3a_3, \ldots, (p-1)a_{p-1} \) is also a complete residue class?

HINT: Consider the product and use Wilson’s theorem.

11. **(TJNMO-FR 2018 - modified)** A positive integer is called *special* if there exist two positive integers \(a \geq 5 \) and \(b \geq 5 \) so that \(n \) gives remainder \(b \) when divided by \(a \), and gives remainder \(a - 2 \) when divided by \(b \). Find the number of *special* numbers less than 100.

12. (a) **(PSS ch6-modified)** Can the number A consisting of 500 sixes and some zeros be a square?

(b) **(PSS ch6)** Can the number A consisting of 600 sixes and some zeros be a square?

13. For any integer \(n > 101 \), we define number \(M_n \) as \(M_n = 101102103 \ldots n \).

For example, \(M_{103} = 101102103 \), \(M_{251} = 101102103 \ldots 250251 \). Find the largest positive integer \(k \) such that \(3^k | M_{400} \).

14. **(PSS 6.15)** Find all primes \(p, q \), so that \(p^2 - 2q^2 = 1 \).

15. **(PSS 6.10)** Prove if \(2^n - 1 \) is prime, then so is \(n \).

16. Prove if \(2^n + 1 \) is prime, then \(n \) is power of 2.

17. Primes in the form \(2^{2^n} + 1 \) are called *Fermat’s Primes*, with the notation \(F_n = 2^{2^n} + 1 \). What are first few *Fermat Primes*. Prove or disprove: \(F_n \) as always prime.

Here is some further reading:

18. **(2012W Junior Tubitak Camp)** Solve \(x^y + 1 = z \) in prime numbers. This means that \((x, y, z) \) are all prime numbers.

19. Assume \(p \) is a prime in a form of \(p = 3k + 2 \) where \(k \) is an positive integer. Assume \(p | a^2 + ab + b^2 \) for some integers \(a, b \). Prove \(p | a \).