# Week 8: Irrational Numbers 

Jiahan

## 1 Basic Definitions

Today we investigate irrational numbers. Recall that we have the set of integers:

$$
\ldots,-3,-2,-1,0,1,2,3, \ldots
$$

Two positive integers are said to be coprime if their greatest common divisor is 1. A real number $r$ is called rational if $r=\frac{p}{q}$ for some integers $p, q$ with $q$ nonzero; $r$ is called irrational if otherwise. Notice that if a positive rational number $r=\frac{p}{q}$ for positive integers $p, q$, then we may assume that $p, q$ are coprime by dividing out the greatest common divisor of $p$ and $q$.

Exercise 0: Is 2022 rational? What about -0.4 ? What about $\frac{5}{2}$ ?
Example 1: $\sqrt{2}$ is irrational.
Proof: if $\sqrt{2}=\frac{p}{q}$, where $p, q$ are coprime positive integers, then $p^{2}=2 q^{2}$, hence $p$ is even. Let $p=2 m$, then $2 m^{2}=q^{2}$, then $q$ is even. This contradicts the fact that $p, q$ are coprime.

Exercise 2: Which of the following numbers are irrational?
(a) $\sqrt[3]{2}$,
(b) $\sqrt{2}+\sqrt{3}$
(c) $\log _{10} 2$.
(d) $\sqrt{2+2 \sqrt{2}}$.

Exercise 3: Prove that if a real number can be expressed as $p+q \sqrt{2}$ where $p, q$ are rational, then it has a unique such expression.

We state the following theorem without proof. However, if there is time, you can try to prove it by assuming $x=\frac{m}{n}$ for $m, n \in \mathbb{Z}$, then multiply by $n^{k}$.

Theorem 4: In general, if $p(x)$ is a polynomial of the form $p(x)=a_{k} x^{k}+a_{k-1} x^{k-1}+$ $\ldots+a_{1} x^{1}+a_{0}$, where $a_{i}, i=0, \ldots, k$ are integers, $a_{n} \neq 0$, then if $\frac{m}{n}$ is a root of $p(x)=0$, where $m, n$ are integers such that $|m|$ and $|n|$ are coprime and $n \neq 0$, then $m$ divides $a_{0}$ and $n$ divides $a_{k}$.

Exercise 5: Prove that the $x^{7}-4 x-1=0$ has no real rational roots.
However, in general determining if something is rational or not is extremely difficult; famously it is still open whether $\pi+e, \pi-e, \pi \cdot e, \ln \pi$ are irrational or not.

## 2 Approximating Irrationals by Fractions

Irrationals can be approximated by rationals. For example, $\sqrt{2}=1.414213 \ldots$, so we can have the following approximation

$$
1, \frac{14}{10}, \frac{141}{100}, \frac{1414}{1000}, \frac{14142}{10000} \ldots
$$

However, these are bad approximations. For example, you can check that $\left|\frac{17}{12}-\sqrt{2}\right|<$ 0.00246 , however $\left|\frac{141}{100}-\sqrt{2}\right|=0.0042 \ldots$, so $\frac{17}{12}$ is a much better approximation to $\sqrt{2}$ than $\frac{141}{100}$, even though the first one has much smaller denominator (12) than that of the second one (100). Another problem is that a priori we don't know the decimal expansions of $\sqrt{2}$, hence we cannot get approximations like $1, \frac{14}{10}, \frac{141}{100}, \frac{1414}{1000}, \frac{14142}{10000} \ldots$ without first use a calculator to see what $\sqrt{2}$ is. A third problem is that we would like to have some sort of error estimation on our approximation.

The way to proceed is as follows:
$0<\sqrt{2}-1<\frac{1}{2}$, this is obvious.
Square both sides: $0<3-2 \sqrt{2}<\frac{1}{4}$,
this rearranges to $0<\frac{3}{2}-\sqrt{2}<\frac{1}{8}$ ! Something miraculous has happened, start with an approximation with error bound $\frac{1}{2}$, we got an approximation with error bound $\frac{1}{8}$ !

Square $0<3-2 \sqrt{2}<\frac{1}{4}$ one more time, we get $0<17-12 \sqrt{2}<\frac{1}{16}$, this rearranges to $0<\frac{17}{12}-\sqrt{2}<\frac{1}{192}$ ! What a ridiculously efficient way of computing $\sqrt{2}$.

Exercise 6: Find a fraction that approximates $\sqrt{2}$ to within $10^{-20}$. Do the same with $\sqrt{5}$. Surprisingly, you don't need many iterations to achieve such high accuracy.

Just how good is our result precisely? The following argument shows that this is the best possible.

Example 7: Recall $\frac{17}{12}$ approximates $\sqrt{2}$ to within 0.00246 , if $\frac{p}{q}$ with $p, q$ coprime is another fraction that approximates $\sqrt{2}$ to within 0.00246 , then from the triangle inequality, we have:

$$
\left|\frac{p}{q}-\frac{17}{12}\right| \leq\left|\frac{p}{q}-\sqrt{2}\right|+\left|\frac{17}{12}-\sqrt{2}\right| \leq 0.00246+0.00246=0.00492
$$

However, $\left|\frac{p}{q}-\frac{17}{12}\right|=\left|\frac{12 p-17 q}{12 q}\right| \geq \frac{1}{12 q}$, hence $\frac{1}{12 q} \leq 0.00492$, so $q \geq 16.9 \ldots$, so $q \geq 17$ ! i.e., if you want a fractional that approximates $\sqrt{2}$ better than $\frac{17}{12}$, you need one with denominator at least 17 !

Exercise 8: Repeat the process above for $\pi$ and $\frac{355}{113}$. You may use the fact that $\frac{355}{113}$ approximates $\pi$ to within $2.67 \times 10^{-7}$. You may be in for a surprise.

The process above is related to continued fractions. Our approximations to $\sqrt{2}$ obtained by keep squaring stuff can also be obtained by using continued fractions. It is possible to show that continued fractions give the best approximations possible. Similarly, $\frac{355}{113}$ can be obtained by using continued fraction as well. The topic of approximating
reals by rationals is called Diophantine approximation.
Exercise 9: Modify our method to obtain rational approximation to $\sqrt[3]{2} .^{1}$

[^0]
[^0]:    ${ }^{1}$ The same iterative procedure can also be obtained from Newton's method.

