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1 Introduction

This handout is an attempt to explain the proof of Lagrange’s Four-Square Theorem using quater-
nions.

Theorem 1.1 (Lagrange’s Four-Square Theorem). Every natural number can be expressed as a sum
of four perfect squares.

Problem 1. Show that a natural number is the sum of four perfect squares if and only if it is the
square of the magnitude of an integer quaternion (that is, a quaternion whose coordinates are all
integers).

Problem 2. Show that Lagrange’s Four-Square Theorem is true if every odd prime number can be
expressed as the sum of four perfect squares.

2 Hurwitz Quaternions

In order to use quaternions, we will want to use a special set of them.

Definition 1. The Hurwitz Quaternions are the quaternions in the set

H = {a+ bi+ cj + dk : a, b, c, d ∈ Z} ∪
{
(a+

1

2
) + (b+

1

2
)i+ (c+

1

2
)j + (d+

1

2
)k : a, b, c, d ∈ Z

}
consisting of all quaternions that either have all integer coordinates, or all integer-plus- 12 coordinates.

Problem 3. Show that H is closed under addition, subtraction, and multiplication.

Problem 4. Show that if q ∈ H, then |q|2 is a natural number.

At this point, we should sketch out the rest of the proof. Let p be an odd prime. We will factor
p as a product p = αβ of Hurwitz quaternions, where neither α nor β has magnitude 1. From this,
we will show that α and β each have magnitude-squared p, and if necessary, modify them slightly
to find an actual integer quaternion with magnitude-squared p, from which we deduce that p is the
sum of four squares.

Throughout the rest of this section, assume p = αβ, where α, β ∈ H and |α|2, |β|2 > 1. We will
find such α and β later.

Problem 5. Show that |α|2 = |β|2 = p.

Problem 6. If α or β has integer coordinates, show that p is the sum of four squares.

Problem 7. Assume neither α nor β has integer coordinates.
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• Show that there is a Hurwitz quaternion ω = 1
2 (±1± i± j ± k) such that γ = α+ ω has even

integer coordinates.

• Show that |ω̄γ − 1|2 = |α|2 = p.

• Show that ω̄γ − 1 has integer coordinates, and that p is the sum of four squares.

3 Euclidean Algorithm for Hurwitz Quaternions

In this section, we will develop a version of the Euclidean algorithm for Hurwitz quaternions, which
we will use later to factor p. First we will show a sort of division by remainder property for Hurwitz
quaternions. Compare this to the integer property where for any integers a, b with a ̸= 0, there is
an integer c (the remainder) with 0 ≤ b− ac < |a|. As we are generalizing properties of the integers
to noncommutative quaternions, we will have to be extra-careful to avoid using commutativity.

Problem 8. Show that if q is a quaternion with rational coordinates, then there is a Hurwitz
quaternion h with |q − h| < 1. (This is analogous to approximating rational numbers with integers
by rounding.)

Problem 9. Show that for any Hurwitz quaternions a, b with a ̸= 0, there is another Hurwitz
quaternion c such that |b− ac| < |a|.

Now that we have this division-with-remainder property, we can use it to build a version of the
Euclidean algorithm and find a sort of gcd:

Problem 10. Let a0, a1 be Hurwitz quaternions with |a0| ≥ |a1| and a0 ̸= 0.
Consider the algorithm given by repeating the following step: Given an, an+1, if we still have

|an| ≥ |an+1| and an, an+1 ̸= 0, then let c be such that |an−an+1c| < |an+1|. Let an+2 = an−an+1c.
Show that this algorithm eventually terminates with an+1 = 0 for some n. Call an, the last

nonzero term, gcld(a0, a1).

Problem 11. Let a, b be Hurwitz quaternions with |a| ≥ |b| and a ̸= 0.
Show that gcld(a, b) is a Hurwitz quaternion with minimal norm such that there exist Hurwitz

quaternions c, d such that a = gcld(a, b)c and b = gcld(a, b)d.

Problem 12. Let a, b be Hurwitz quaternions with |a| ≥ |b| and a ̸= 0. Show that there exist
Hurwitz quaternions c, d such that gcld(a, b) = ac+ bd.

4 Putting It All Together

In order to factor p, we will first factor an integer multiple of p into two Hurwitz quaternions that
aren’t purely real.

Problem 13. Show combinatorially that there exist numbers l,m ∈ {0, 1, . . . , p − 1} such that
1 + l2 +m2 ≡ 0 (mod p).

Problem 14. Find l,m so that there is an integer k with pk = (1 + li+mj)(1− li−mj).

Now we want to use this factorization to split p. If we had natural numbers such that a divides
bc, we could split a into a factor that divides b and a factor that divides c - specifically, a =

gcd(a, b)
(

a
gcd(a,b)

)
. We attempt to replicate that logic with our gcld function.

Problem 15. Find a Hurwitz quaternion α such that:
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• There exist Hurwitz quaternions β, γ such that p = αβ and 1− li−mj = αγ.

• There exist Hurwitz quaternions b, c such that α = pb+ (1− li−mj)c.

It now suffices to show that |α|, |β| > 1.

Problem 16. If |β| = 1, show that (1− li−mj)/p is a Hurwitz quaternion, and find a contradiction.

Problem 17. If |α| = 1, show that (1+li+mj)/p is a Hurwitz quaternion, and find a contradiction.

Problem 18. Run back through the proof, and make sure you understand how it fits together.

3


	Introduction
	Hurwitz Quaternions
	Euclidean Algorithm for Hurwitz Quaternions
	Putting It All Together

