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1 Preliminaries

First, let’s have a brief refresher on convergence of sequences. We won’t be needing all the formal
stuff today, so we’ll use informal definitions.

Definition 1.1. A sequence z1,x9,23, - € R is said to converge to x € R if the numbers in the
sequence become closer and closer to x and not to any other number.
Problem 1. Do the following sequences converge to anything? If so, what do they converge to?
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3, 3.1, 3.14, 3.141, 3.1415, ...
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1,4, 1.9, 3.1, 1.99, 3.01, 1.999, 3.001, ...
Problem 2. Can a sequence converge to more than one value?

Let f be a real-valued function such that if 0 < z < 1, then 0 < f(z) < 1. To draw a cobweb
plot of f, first plot the functions y = = and y = f(z). Pick a starting value ¢ € [0,1]. Start by
plotting a line from (xg,0) to (xo, f(z0)), then draw a line from (zo, f(x0)) to (f(xo), f(z0)). Keep
connecting dots, alternating between vertical lines (z,z) to (x, f(x)) and horizontal lines (x, f(z))

to (f(z), f(x)).
Here’s an example for f(r) = z(1 — z)(42? + x + 1), with 29 = 0.223:

10

0.8 4

0.6 4

0.4 4

0.2 4

0.0 T T T T
0.0 0.2 0.4 0.6 0.8 10

*with revisions by Glenn Sun



Problem 3. Let f(z) = x(1 — x)(42® + x + 1), 19 = 0.223. Using the cobweb plot, does the
sequence g, f(xo), f(f(xg)),... converge? If so, what can you say about its limit?

Problem 4. Fill out the following cobweb plots with starting point zg = %:
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(¢) f(z) =1=2[z —0.5] (d) f(z) ==2?

Definition 1.2. A fixed point of a function is a point x € R satisfying f(z) = . We say that a
fixed point z of a continuous function f : R — R is stable if there is some interval (a,b) containing
x such that if zo € (a,b), then the sequence o, f(xo), f(f(20)),... converges to z. Otherwise it is
called unstable.

Problem 5. In the four examples in the previous problem, where are the fixed points, if there
are any? Are they stable or unstable? (You might want to draw a few cobweb plots with starting
points closer to the fixed points to figure this out.)

1.1 Optional Bonus Problems

Problem 6. Let f(x) = ax + b be a linear function. For what values of a,b does f have a fixed
point, and when does f have a stable fixed point?

A function f : R — R is called continuous if whenever xg, x1, 2, ... converges to z, the sequence

f(xo), f(21), f(22), ... converges to f(x).

Problem 7. By definition, every stable fixed point is the limit of some convergent sequence
xo, f(z0), f(f(x0)),.... Is the converse always true? That is, if zg, f(xo), f(f(z¢)) converges to z,
must « be a stable fixed point, or at least a fixed point? Give a condition on f for when x must be



a fixed point, give an example of f and zy where x is not a fixed point, and give an example of f
and xg where x is a fixed point but not stable.

2 Logistic Maps

In this section, we study some functions called the logistic maps, which pop up in population
modelling, and also have interesting mathematical properties. (Note: These are different (though
related to) the logistic curve, which also pops up in population modelling problems and in calculus
classes. If you’ve heard of that, you can think of these logistic maps as a discrete-time version of
that continuous-time population model, but this discrete version has much more personality.) Let’s
model the size of a population. Suppose there is a species of rabbit that has a fixed generation
length. If the rabbits have an infinite supply of food, then after each generation, each rabbit is
replaced with r rabbits of the next generation.

Problem 8.

1. Given this infinite supply of food, if we start with x rabbits at generation 0, how many rabbits
do we have at generation ¢?

2. Under what circumstances will the number of rabbits approach a constant population?

Now assume that the rabbit’s reproductive rate depends on the amount of available food, and
that the amount of available food depends on the number of rabbits. Assume that their environment
has a carrying capacity, a limit to number of rabbits that the food can support. Let’s measure
the population not as a natural number, counting the rabbits, but as a real number, x, which is
the fraction of the carrying capacity, so that x = 0 indicates 0 rabbits, but z = 1 indicates that
the population is the carrying capacity. Now assume that with each successive generation, each
rabbit is replaced with r(1 — z) children, so that as the number of rabbits increases to the carrying
capacity, and the amount of available food decreases to 0, the reproductive rate shrinks down from
r to 0.

Definition 2.1. If there are x rabbits at generation ¢, then there will be rz(1 — x) rabbits at
generation ¢t + 1. We call this function the logistic map with parameter r, and will use the notation

]

Problem 9.

1. Describe the trends in population if 0 < r < 1.
2. Explain what happens in our model if we let x at generation t be greater than 1.
3. What population at generation 0 maximizes the population at generation 1?7

4. We know that our model isn’t necessarily predictive if we ever have z outside the interval
[0,1]. Do all values of r guarantee that if we start with « € [0,1], it stays in that interval
forever? If not, what values do guarantee this?

Problem 10. What are the fixed points of f.7 Are they valid populations?



Problem 11. Draw a cobweb diagram for f,. at r = 0.8,1.6,3.2,3.5, with one or more different
starting values of 0 < « < 1. In each of the diagrams, say whether or not the fixed points are
stable.
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Problem 12. Make a copy of the following Google Sheet: https://bit.ly/ormc-logistic. (If
you're in-person, feel free to use your phone or ask an instructor to pull it up for you.) The Google
Sheet calculates the same sequence 411 = fr(x¢) that you found in the cobweb diagram. By
adjusting the value of r within the range you found in Problem [9}4, for what values of r does the
population converge to a fixed point? For each such r, which fixed point does it converge to? Make
sure your answer agrees with the previous examples in your cobweb plots.

The proof of this takes some work, so we put it in the bonus section.
Problem 13. For values of r between 3 and 4, when is there some regularity in what happens?
When does the system become chaotic?
2.1 Optional Bonus Problems
The problems here build up the following theorem.

Theorem 2.1. For 0 < r < 1, 0 is the unique fixed point and is stable. For 1 < r < 3, 0 is unstable
and 1 — % is stable. For 3 < r < 4, no fixed point is stable.

Problem 14. Let f : R — R be a nonconstant polynomial. Recall that the finitely many zeroes of
f split R into intervals on which f is positive and intervals on which f is negative. Show that for


https://bit.ly/ormc-logistic

a fixed point xg to be stable, f(z) — z must be positive immediately to the left of xy or negative
immediately to the right of xg.

Problem 15. Prove that 0 is a stable fixed point for 0 < r < 1, and that it is unstable for
1 <r<4.

We will find the following result about limits useful:

Problem 16. Let ag,aq,ao,... be a sequence of numbers, let 0 < r < 1, and let a be a number.
Show that if for all n, |ap+1 — a| < r|a, — a|, then ag, a1, az,... converges to a.

Problem 17. Let f(z) = az? + bz + ¢ be a quadratic, and let 2y be a fixed point of f(x). Show
that if |2az + b| < 1, then z is stable. (Hint: use the previous problem.)

Problem 18. Let f(x) = az? + bz + ¢ be a quadratic, and let xg be a fixed point of f(x). Show
that if |2ax + b > 1, then ¢ is unstable.

Problem 19. Finish the proof of Theorem

3 The Mandelbrot Set

The Mandelbrot set is a subset of C that you might have heard of: it’s a fractal, meaning there is
infinite detail as you keep zooming in.
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(Image source: Wikipedia.) We will now investigate the Mandelbrot set and its connection to the
logistic map. First, we recall some definitions about complex numbers.

Definition 3.1.
e Recall that the complex numbers C can all be expressed as a+bi, where a,b € R and i = /—1.
o Ifa,b € R, let a+ bi = a — bi. We call this the complex conjugate of a + bi.
o If a,b € R, let |a + bi| = Va2 + b2. We call this the magnitude of a + bi.

Definition 3.2. Let zg, z1,22,... be a sequence of complex numbers. Say that this sequence is
bounded if and only if there is some real number M such that for all n € N, |z,| < M.

Problem 20. Determine which of the following sequences of complex numbers are bounded:



3. zp = cos(n) + isin(n)
11,1 1,11
4. 1t Tty g,

Definition 3.3. The Mandelbrot set is the set of all complex numbers ¢ such that the sequence
20, 21, - . - is bounded, where zo = 0 and 2,11 = f.(2,) = 22 + c.

Problem 21. Determine whether the following points are in the Mandelbrot set, that is, if the
sequence defined above is bounded for the following choices of ¢: 0,1, —1, %, —1, i.

Recall that f,(x) = rz(1 — x) is the logistic map. The Mandelbrot set has a deep connection
with logistic maps. Actually, they are pretty much the same thing: it’s possible to implement the
logistic map using the Mandelbrot map.

Recall that if g(x) is any bijective (one-to-one and onto) function, g~
satisfying ¢g~!(g(z)) = @ for all . In other words, g~! undoes g.

We can compute the logistic map f,(x) using the Mandelbrot map as follows: Let z = g(x) where
g(xz) = ax + b for some particular a and b. Then, take Mandelbrot map f.(z) for some particular c.
Finally, transform f.(z) back using g~!, that is, f.(x) = g~ !(f.(2)). We will determine what a, b, ¢
should be in the next question.

1'is the inverse of g,

fe

z—>22+c

Similarly, we can also compute the Mandelbrot map f.(z) using the logistic map. The process

is exactly the same, except that we start with ¢g—!.

Problem 22. We will investigate the connection described above.

1. Let r be given. Show that g(x) = ax + b works for some real numbers a and b. That is, solve
for a, b, ¢ in the following equation in terms of r:

9(2)* + ¢ = g(ra(l - 2)).

2. Practice using this correspondence. Let xzg = % and r = 2. Compute 1, z9, and the

corresponding zg, z1, and zo, using whatever method you like. Then, compute the same
values a different way using the correspondence.



3. Explain why a sequence given by the logistic map xq, fr(xo), fr(fr(x0)),... is bounded if and
only if the corresponding sequence given by the Mandelbrot map 2o, f.(20), fe(fe(20)), - .- i8
also bounded.

We will now investigate the shape of the Mandelbrot set using this correspondence. Look back
a few pages for the picture.

Problem 23. We first describe the intersection of the Mandelbrot set with the real number line.

1. Recall that behavior given by the logistic map z, = fr(z,), o € [0,1] produces behavior
bounded in [0,1] if and only if € [0,4]. Are there more r for which the behavior of the
logistic map is bounded, although not necessarily in [0, 1]? Feel free to investigate again with
the Google Sheet.

2. Using the correspondence from the previous question, describe the intersection of the Man-
delbrot set with the real number line. Compare your answer with the picture from a few
pages ago.

Next, notice that the main part of the Mandelbrot set consists of one big heart-shaped region
(called a cardioid), surrounded by what looks like circles. Does each region have some kind of
special property?

Problem 24. Recall that logistic map has qualitatively different behavior in certain intervals:
e For r € [0, 1], sequences converge to 0.
e For r € [1, 3], sequences converge to a non-zero fixed point.
e For r slightly above 3, sequences converge to periodic behavior.
e For r slightly below 4, sequences exhibit chaotic behavior.
Now, do the following problems.

1. Using the correspondence from Problem graph ¢ as a function of r. (On paper or on
Desmos.) Then look at the picture of the Mandelbrot set. Trace ¢ from r = —2 to 4 in the
picture. For what r are there “key” transitions between regions? Make a prediction for what
c belong in the large cardioid.

2. Recall that from Problem 11} » = 3.2 gives periodic behavior with period 2, and r = 3.5 gives
periodic behavior with period 4. What ¢ do these correspond to? By looking at the picture
of the Mandelbrot set again, can you make some more conjectures?

Problem 25. We will find a parametric equation for the boundary of the cardioid region.

1. Stable fixed points can be defined for functions f : C — C, in essentially the same way they
were defined over the reals: a point satisfying f(z) = z such that for all zy near z, iterating
20, f(20), f(f(20)),... converges to z.

Show that if 7 is complex, then f,(z) = rz(1—z) defined on the complex numbers has a stable
fixed point if |r| < 1. (For real numbers, this means r € [—1, 1]: remember that r € [1, 3] also
generates stable fixed points, we’ll treat this case later.)



2. Any complex r with |[r| = 1 can be expressed as cos@ + isinf for some real . Find a
parametric equation which consists of all ¢ € C corresponding to |r| = 1. Graph this on
Desmos. What do you see?

3. You might be surprised by what you saw, since we only used |r| < 1, ignoring r such as 2 for
which there are nonzero stable fixed points. Why do we not need to consider those other r?

To understand the other parts of the Mandelbrot set, it helps to introduce some new words.
We’ve been mentioning periodic behavior without defining it for some time now, so we give the
definition here.

Definition 3.4. Let n > 0 be a natural number and f : C — C be a function. Then we say that
z € Cis a periodic point of f when f"(z) = f(f(...(f(2))...) = z. We say that z has period n if
—_——

n times
n is the least positive number such that this is true.

For instance, under the map f(z) = —z, every point is periodic, and every point has period 2
except for 0 which has period 1. A point of period 1 is the same as a fixed point.

Problem 26.

1. Suppose f.(z) = 22 +c has a periodic point z of period 2, but not period 1. Write an equation
that z satisfies if and only if this is true.

2. What are the two periodic points of period 2 when ¢ = —17 When ¢ = —%?

3. For ¢ = —1 or —%, suppose you start iterating zo, fe(zp),... very close to a periodic point,
but not exactly at the periodic point. Do the values approach the periodic points or go away
from it? Feel free to use a calculator.

Because of this stability requirement, which we would need calculus to analyze properly, deriving
the equation for the circle to the left of the main cardioid is actually significantly harder than the
cardioid, and beyond the scope of this worksheet. However, its shape is easily guessable.

Problem 27.

1. Looking at the plot of the Mandelbrot set, guess an equation that describes the boundary of
the circle to the left of the main cardioid.

2. Using this, what is the largest value of r for which zg, f(z¢), ... becomes a cycle with period
27
3.1 Optional Bonus Problems

Problem 28. We will show that the Mandelbrot set is contained in the disk of radius 2 centered
at the origin.

1. Let ¢,z € C be such that |z| > 2. Then show that |f.(2)| — |c| > 2(]z] — |¢]).

2. Let zp41 = fe(zn). Show that if for some n, |z,| > 2 and |z,| > |c|, then the sequence
Zny Zntls Znt2s - - - 18 unbounded.

3. Conclude that if for some n, |2,| > 2 and |z,| > |c|, then ¢ is not in the Mandelbrot set.

4. Finally, show that if |¢| > 2, then ¢ is not in the Mandelbrot set, and conclude that the
Mandelbrot set is contained in the disk of radius 2 centered at the origin.



4 Video

To find out more about these topics, Youtube has many great videos about the logistic map, the
Mandelbrot set, and the connections between the two.

Here is one of my favorites, on the logistic map, which touches on the Mandelbrot set: https:
//www.youtube.com/watch?v=ovJcsL7vyrk
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