CHALLENGE PROBLEMS: (Attempt on a separate piece of paper)

1.) Notice that the quadrilateral below is such that AO, BO, CO, and DO all have equal length and moreover AC and BD are perpendicular (meaning they form right angles). Prove that the quadrilateral must be a square.

[Diagram of a square with labeled vertices]

Hint: a square is defined to be a quadrilateral where all four sides have equal length and all four corners form right angles.

2.) What is the shortest path that starts at A, goes straight to the line, and then goes straight to B in the diagram below to the left? An example of such a path (not the shortest) is on the right.

[Diagram showing a path from A to B]

Hint: use triangle congruence.

3.) What is the shortest path that starts at A, goes straight to the top line, drops down perpendicular to the bottom line, and then goes straight to B in the diagram below to the left? An example of such a path (not the shortest) is on the right.

[Diagram showing a path from A to B]

Hint: use triangle congruence.
4.) Below, \(ABGH, BCFG, CDEF\) are all squares with equal side lengths. Recall our definition of a square is a quadrilateral with equal side lengths and interior angles all being right angles. Prove that the angles \(\alpha, \beta, \gamma\) are such that \(\alpha^\circ + \beta^\circ + \gamma^\circ = 90^\circ\) (meaning \(\alpha, \beta, \gamma\) sum up to a right angle).

Hint: this problem is extra difficult. Try thinking of auxiliary constructions that will allow you to use triangle congruence effectively. By auxiliary constructions, I mean try drawing in extra lines or shapes to help.

Hint 2: consider the above auxiliary construction and try to use triangle congruence. Again this is a tough problem so it is okay if you struggle on it.