FALL 2021

OLGA RADKO MATH CIRCLE
ADVANCED 2
NOVEMBER 7TH, 2021

Each problem is worth 2 points unless otherwise noted.

1. COMBINATORICS ON WORDS

Problem 1.1. Find the line graph associated to the following directed graph.
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Problem 1.2. Find all Eulerian paths of the following graph starting at vertex 0.

Problem 1.3. Find a de Bruijn word of order 3 in a binary alphabet.
Problem 1.4. Find a Sturmian word of order 4 in a binary alphabet.
Problem 1.5. What is the length of a de Bruijn word in a ternary alphabet?

Problem 1.6. How many distinct de Bruijn words of order 2 are there in a binary alphabet?

2. NIMBERS

For reference, the Nimber addition table for 0 through 7 is given below.
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+ 0/1/2 3 4 5 6|7
0 0|1 2 3 4 5 6 7
1 11 0| 3| 2| 5| 4| 7| 6
2 | 2| 3| 0| 1) 6| 7| 45
3| 3| 2| 1) 0| 7| 6| 5| 4
4 4,5 6, 7 0 1 2| 3
5| 5| 4| 7| 6| 1| 0| 3| 2
6 6| 7| 4| 5| 2| 3| Of 1
7| 7| 6| 5| 4| 3| 2|1 1| 0

Problem 2.1. Which player wins the following Nim games? Answer all correctly for points
(no partial credit).

(1) #5 + %6 + 7
(2) %12+ 12
(3) #1 + #2 + *x3 + x4 + x5 + %6 + *7

Problem 2.2. Which player wins the Nim game %28 + *5 + %257

Problem 2.3. Play a game of %5 + %6 + %7 Nim with an instructor. Go first. Win the game
for 2 points.

Problem 2.4. Play a game of %54 %747 Nim with an instructor. Go second. The instructor
will make a mistake at some point in the game. By punishing the mistake, win the game for
2 points.

Problem 2.5. Consider the following game: There is a single stack of n coins. Players take
turns removing either 2 coins or 3 coins from the stack. The player who cannot make a legal
move loses. Determine all values of n for which the first player has a winning strategy.

Problem 2.6. The instructor will choose ten vectors on R? (e.g., (3,—1), (2,2)). The in-
structor and you take turns picking vectors. After all vectors are picked, both of you will
compute the sum of the length of your vectors (the length of a vector (a, b) is Va2 + b%). The
person with the larger value wins. Play this game twice with an instructor, once as the first
player, once as the second player.

3. MISCELLANEOUS

Problem 3.1. Choose a game of chance and play it twice with an instructor. You gain the
full points of this question if you win one of the two games, and 0 points otherwise. The game
you choose must be a fair game (i.e., both you and the instructor have 50 percent chance
of winning), and the instructor reserves the right to refuse to play if you cannot convince
him/her that your game is fair.

Problem 3.2. How many ways can 2021 be written as the difference between squares of two
integers?

Problem 3.3. Find a perfect square which consists of 4 digits such that first 2 of them are
the same and last 2 are the same.



Problem 3.4. Find the coefficients of 7 and 2'® in (1 + 2° + 27)%°.

Problem 3.5. Determine the last two digits of 7777777,

Hint: ask your instructor about Fermat’s little Theorem, if you do not know it already.

Problem 3.6. Let n be a positive integer; let z(n) > n be the smallest integer such that
among any x(n) number of integers, one can find n of them whose sum is divisible by n. Find
x(1024).

Problem 3.7. Consider the polynomial f(z) = 2° + 22% + 327 4+ 425 4 52° 4 62* + 723 +
822 + 92 4 ¢ (where ¢ is some variable that you don’t know the value of). Being a 9-th degree
polynomial, there are 9 such values of x such that f(z) = 0. Find the sum of all such values
(the roots of the polynomial).

Problem 3.8. (a) What is the smallest number of rooks which can be arranged on an 8 x 8
chessboard in such a way that every square of the board is controlled by at least one of them?
(b) In how many different ways can this be done?

Problem 3.9. Compute the product

T T T 7r
COS — X COS — X COS — X ...COS — X ...
4 8 16 2n

Problem 3.10. Every minute a cell has equal chance of dying, staying unchanged or dividing
into 2. Starting with 1 cell, what is the probability that the cell would eventually go extinct
at some point?

Problem 3.11. Find the last two digits of
lem(5" +1,5% +1,5% +1,... 5202 1 1),

Problem 3.12. If a, b, ¢ are rational roots of 23 + ma + n with a # 0, find all rational roots
of ax? + bx + c.

Problem 3.13. Quadrilateral ABCD satisfies ZABC = ZACD = 90°, AC = 20, and
AD = 30. Diagonals AC and BD intersect at £ and AE = 5. Find the area of ABCD. The
below diagram is not drawn to scale.
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Problem 3.14. If P is a two-dimensional plane in R? and z is a point in R?, the projection
of x on P is the unique point y on P such that the segment xy is perpendicular to P. Suppose
now that A is a subset of R3, and there are two planes such that the projection of A onto
them are both (two-dimensional) disks. Show that these two disks must have equal radius.

Problem 3.15. Let Z be the set of integers. Determine all functions f : Z — 7Z such that
for all integers a and b, we have
f(2a) +2f(b) = f(f(a +D)).

Hint: Try to plug in @ = 0 and a = 1 into the relation above and get two relations; link the
two relations you got.
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Problem 3.16. Find the upper bound on z if
[e.e]
> 5
k2
k=1
converges.

Problem 3.17. What is the smallest whole number that, when written out, uses all the
vowels (aeiouy) exactly once each in its formal English spelling?
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