Los Angeles Math Circle

Cryptarithms

Cryptarithmetic, also know as cryptarithm, alphametics, or word addition, is a math game of figuring out unknown numbers represented by words. Different letters correspond to different digits. Same letters correspond to same digits. The first digit of a number cannot be zero.

Problem 1 Solve the following cryptarithm.
$H E$
$+\quad H E$
$H E$
$S H E$

The following cryptarithm ${ }^{11}$ is a bit more complicated.

Let's try to solve it together. First, $S+M \geq 10$ because the result carries over from the fourth column to the fifth. A sum of single digit numbers cannot exceed 18 , so $M=1$.

$$
\begin{array}{r}
S E N D \\
+\quad 1 O R E \\
\hline 1 O N E Y
\end{array}
$$

Now, $S+1 \geq 10$. This can only happen if either $S=9$ or $S=8$. Let us consider the latter case. If $S=8$, then $O=0$ and one is carried over from the third column, implying $E=9$ and $N=0$. But, since $O=0, N \neq 0$. Thus, $S=9$.

$$
\begin{array}{r}
9 \mathrm{END} \\
+\quad 1 \mathrm{ORE} \\
\hline 1 \mathrm{ONEY}
\end{array}
$$

[^0]Looking at the fourth column, we see that O can be either zero or one. In the latter case, one is carried over from the third column, so $E+1 \geq 9$. $E \neq 9$ because $S=9$, so $E=8$. If this is the case, then one is carried over from the second column and $N=0$. In the second column, this gives $0+R=10+E=18$, so $R=18$ and is a single digit number at the same time. Thus, $O=0$ and $E=N-1$.

Suppose that one is not carried over from the first column to the second. Then $N+R=10+N-1$ implying $R=9$, an impossibility since $S=9$. Thus, one is carried over from the first column and $N+R+1=10+N-1$, giving us $R=8$ and $D+N-1 \geq 10$.

Since $Y \neq 0,1$, the latter inequality can be strengthened to $D+N>12$. The single-digit number N can only take values $3,4,5,6,7$. Let us consider these possibilities case by case.

$$
\begin{aligned}
& N=3 \text { implies } D>9 \\
& N=4 \text { implies } D>8, \text { but } D \neq 9 . \\
& N=5 \text { implies } D>7, \text { but } D \neq 8,9 . \\
& N=7 \text { implies } D>5, \text { so } D=6 \text { and } N-1=6 .
\end{aligned}
$$

Finally, $N=6$ implies $D>6$, so $D=7.7+5=12$, so $Y=2$. Here comes the solution.

$$
\begin{array}{r}
9567 \\
+\quad 1085 \\
\hline 10652
\end{array}
$$

Problem 2 Solve the following cryptarithm.

Problem 3 Solve the following cryptarithm.

$$
\begin{array}{r}
M O T H E R \\
+F A T H E R \\
\hline P A R E N T
\end{array}
$$

Problem 4 Solve the following cryptarithm.

$$
\begin{array}{r}
O N E \\
+T H R E E \\
F O U R \\
E I G H T
\end{array}
$$

[^0]: ${ }^{1}$ Invented by Henry Dudeney, published in Strand Magazine in 1924.

