Los Angeles Math Circle

Cryptarithms

Cryptarithmetic, also know as cryptarithm, alphametics, or word addition, is a math game of figuring out unknown numbers represented by words. Different letters correspond to different digits. Same letters correspond to same digits. The first digit of a number cannot be zero.

Problem 1 Solve the following cryptarithm.

$$\begin{array}{cccc} H & E \\ + & H & E \\ \hline H & E \\ \hline S & H & E \end{array}$$

The following cryptarithm¹ is a bit more complicated.

Let's try to solve it together. First, $S + M \ge 10$ because the result carries over from the fourth column to the fifth. A sum of single digit numbers cannot exceed 18, so M = 1.

Now, $S + 1 \ge 10$. This can only happen if either S = 9 or S = 8. Let us consider the latter case. If S = 8, then O = 0 and one is carried over from the third column, implying E = 9 and N = 0. But, since O = 0, $N \ne 0$. Thus, S = 9.

¹Invented by Henry Dudeney, published in Strand Magazine in 1924.

Looking at the fourth column, we see that O can be either zero or one. In the latter case, one is carried over from the third column, so $E + 1 \ge 9$. $E \ne 9$ because S = 9, so E = 8. If this is the case, then one is carried over from the second column and N = 0. In the second column, this gives 0 + R = 10 + E = 18, so R = 18 and is a single digit number at the same time. Thus, O = 0 and E = N - 1.

		9	N-1	Ν	D
+		1	0	R	N-1
	1	0	Ν	N-1	Y

Suppose that one is not carried over from the first column to the second. Then N + R = 10 + N - 1 implying R = 9, an impossibility since S = 9. Thus, one is carried over from the first column and N + R + 1 = 10 + N - 1, giving us R = 8 and $D + N - 1 \ge 10$.

Since $Y \neq 0, 1$, the latter inequality can be strengthened to D + N > 12. The single-digit number N can only take values 3, 4, 5, 6, 7. Let us consider these possibilities case by case.

N = 3 implies D > 9.

N = 4 implies D > 8, but $D \neq 9$.

N = 5 implies D > 7, but $D \neq 8, 9$.

N = 7 implies D > 5, so D = 6 and N - 1 = 6.

Finally, N = 6 implies D > 6, so D = 7. 7 + 5 = 12, so Y = 2. Here comes the solution.

Problem 2 Solve the following cryptarithm.

$$\begin{array}{ccccccccc}
F & O & R & T & Y \\
+ & & T & E & N \\
\hline
& & T & E & N \\
\hline
S & I & X & T & Y
\end{array}$$

Problem 3 Solve the following cryptarithm.

Problem 4 Solve the following cryptarithm.