Week 4: Combinatorics continued

Konstantin Miagkov, Nikita

1 From Before

Problem 1 (Week 1 Problem 2).

a) Show that
\[\binom{n}{0} + \binom{n}{1} + \ldots + \binom{n}{n} = 2^n. \]

b) Show that
\[\binom{n}{0} - \binom{n}{1} + \binom{n}{2} - \binom{n}{3} + \ldots + (-1)^n \binom{n}{n} = 0. \]

Problem 2 (Week 2 Problem 6).
Show that if \(p \) is prime and \(1 \leq k < p \), then \(p \mid \binom{p}{k} \).

Problem 3 (Week 2 Problem 7).
Let \(ABCD \) be a cyclic quadrilateral, and let \(T \) be the intersection of lines \(AB \) and \(CD \). Assume \(A \) lies on the segment \(TB \) and \(D \) lies on the segment \(TC \). Show that \(TA \cdot TB = TC \cdot TD \).

Problem 4 (Week 2 Problem 8).
Let \(BB_1 \) and \(CC_1 \) be altitudes in a triangle \(\triangle ABC \). Show that the tangent line at \(A \) to the circumcircle of \(\triangle ABC \) is parallel to \(B_1C_1 \).

2 New Problems

Problem 1.
Toys R Us has recently introduced a new revolutionary type of toy – a wire cube with a colored sphere at each corner. The spheres can be one of 8 colors, and each cube has to contains all 8 possible colors. How many different cubes can Toys R Us produce?

Problem 2.
Count the number of 5-digit numbers which contains exactly the digits 1,2,3,4,5 and the even digits are not adjacent to each other.

Problem 3.
Prove that for any integer \(a, b \) and prime \(p \) one has
\[p \mid (a + b)^p - a^p - b^p. \]